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Abstract

This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory
accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research ques-
tions are as follows: (1) What are typical strata representation rates and outcomes on physics research-
based assessments? (2) To what extent do MAIHDA models create more accurate predicted strata out-
comes than fixed-effects models? and (3) To what extent do MAIHDA models allow the modeling of
smaller strata sample sizes? We simulated 3,000 data sets based on real-world data from 5,955 students
on the LASSO platform. We found that MAIHDA created more accurate and precise predictions than
fixed-effects models. We also found that using MAIHDA could allow researchers to disaggregate their
data further, creating smaller group sample sizes while maintaining more accurate findings than fixed-
effects models. We recommend using MAIHDA over fixed-effects models for intersectional investigations.
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Originating in the 1980s, the concept ‘‘intersec-
tionality’’ highlights ‘‘the vexed dynamics of
difference and the solidarities of sameness in the
context of antidiscrimination and social movement
politics’’ (Cho, Crenshaw, and McCall 2013:787).
Following Crenshaw’s (1990) introduction of the
term to understand the experiences of Black
women, researchers have expanded applications
of intersectionality to include diverse identities
and disciplines (Carbado et al. 2013; Collins
2019; Collins and Bilge, 2020; Crenshaw, 1989;
Harris and Patton 2019; Mena and Bolte 2019;
Nash, 2008; Teffera et al. 2018). Collins (2015)
advocates for developing intersectionality as a criti-
cal social theory to understand and change the exist-
ing social order. To use intersectionality in this way,

Collins details four principles of power and social
structures: (1) Social strata (e.g., race, class, and gen-
der) act as markers of power that are interdependent
and mutually constructed; (2) power relations across
the intersections of these power markers create
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complex, interdependent inequalities; (3) individu-
als’ and groups’ locations within these intersecting
power relations shape their experiences and perspec-
tives; and (4) solving social problems requires inter-
sectional analyses specific to the context of the
social problem.

Choo and Ferree’s (2010) identification of
group-, process-, and systems-centered approaches
to studying intersectionality highlights the breadth
of its possibilities. Group-centered research cen-
ters the voices of multiple marginalized groups,
aligning with McCall’s (2005) anti-categorical or
intracategorical paradigms. Anti-categorical com-
plexity challenges the use of categories that may
reinforce inequalities, whereas intracategorical
complexity examines specific intersectional strata
to understand lived experiences better. Process-
centered research focuses on power dynamics
and the intersecting oppressions or privileges,
often corresponding with McCall’s intracategori-
cal and intercategorical paradigms. Intercategori-
cal complexity involves analyzing existing strata
to explore inequalities and their evolution.
System-centered research examines the interac-
tions among multiple forms of oppression, moving
beyond a single-system focus to encompass com-
plexities like racism, sexism, and classism (Willis
1981). This approach typically aligns with intercate-
gorical complexity, facilitating comparisons across
social strata and exploring various social locations,
such as STEM fields or teaching methods.

Given the breadth of approaches to studying
intersectionality, Cho et al. (2013) highlight the
necessity for a dedicated Intersectionality Studies
field, and Collins (2019) envisions a vibrant inter-
sectional community that combines grassroots and
top-down theories, embracing diverse perspec-
tives, methodologies, and disciplines to overcome
theoretical limitations. Both advocate for intersec-
tionality as a vital practice aimed at challenging
and reforming unjust systems. Quantitative inter-
sectional research can contribute to these goals by
creating pathways for marginalized groups in
STEM, through innovative teaching methods, and
by redefining participation in STEM fields. Col-
lins’s (2015) four principles guide quantitative
researchers to develop intersectional models that
are ‘‘meaningful’’ rather than merely statistically
‘‘significant.’’ The term ‘‘meaningful’’ is crucial
here because reliance on statistical significance
for model selection can overlook educationally rel-
evant differences (Wasserstein and Lazar 2016) and
yield misleading outcomes (Van Dusen and Nissen

2022). Additionally, these principles emphasize the
necessity of considering power dynamics beyond
individual social strata in models, including instruc-
tional methods and school characteristics.

Salem (2018) describes intersectionality as
a theory that travels across time, place, and space;
it has been adapted and used differently across
contexts and communities. For instance, the rise
of critical quantitative theories has brought inter-
sectionality into quantitative research (Tabron
and Thomas 2023). However, challenges in adapt-
ing intersectionality quantitatively have hindered
practical and theoretical advances (Bowleg,
2008). Bauer et al. (2021) highlight this, noting
a significant gap in theoretical consistency in
quantitative intersectionality studies.

Quantitative STEM equity research often
groups marginalized populations (e.g., underrepre-
sented minorities [URMs]) and analyzes oppres-
sion separately (e.g., racism or sexism). These
choices, largely driven by institutional norms
rather than theory (e.g., the National Science
Foundation’s categorization of URMs), aim for
statistical significance but can mask true inequities
(Shafer, Mahmood, and Stelzer 2021; Wasserstein
and Lazar 2016). Incorporating intersectionality
could enhance understanding of inequities and
inform equitable educational reforms (Van Dusen
and Nissen 2020a, 2020b). However, this approach
demands analytic methods capable of addressing
the complex interplay of social identities, power
dynamics, and discipline-specific practices.

In examining intersectionality in feminist liter-
ature, McCall (2005) outlines three approaches:
anti-categorical, intracategorical, and intercategori-
cal. Quantitative research, which inherently catego-
rizes, typically uses intra- or intercategorical meth-
ods, with the latter being more prevalent (Bauer
et al. 2021). The fixed-effects model is frequently
used to assess intersectional outcomes, incorporating
main effects for each aspect of intersectional social
strata (e.g., race, gender) and all of their potential
interactions (Evans 2019; Evans, Leckie, and Merlo
2020). Intersectional social strata are the provision-
ally adopted analytic categories (e.g., the combina-
tion of race, gender, and first-generation designa-
tion) used to document inequalities. This approach,
while offering nuanced insights, becomes increas-
ingly complex and data-intensive with each added
identity stratum, leading to challenges in achieving
sufficient statistical power for reliable outcomes.

Researchers have proposed a multilevel analy-
sis of individual heterogeneity and discriminatory
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accuracy (MAIHDA; Evans 2015, 2019; Evans
et al. 2018; Merlo 2018) to address some of the
shortcomings of prior methods. To improve model
predictions across strata, MAIHDA nests individ-
uals within their social identities (see Figure 1;
Evans et al. 2020; Keller et al. 2023). By combin-
ing the main effects with the variance terms for
each strata, MAIHDA can create more accurate
predictions than adding the primary terms without
including interaction terms. MAIHDA offers sev-
eral potential advantages over fixed-effects mod-
els. First, MAIHDA aligns with an intersectional
perspective by including all strata in a model
regardless of their sample size. Second, by reduc-
ing the number of terms in the model, MAIHDA
reduces the statistical power requirements. Third,
MAIHDA seeks to increase the accuracy of pre-
dictions by drawing on the shrinkage, or partial
pooling, that nesting within each aspect of a strata
provides in a multilevel model (Raudenbush and
Bryk 1986). Shrinkage allows multilevel models
to make predictions for each strata that are
informed by the predictions made for other strata.
Shrinkage benefits are likely to be strongest for
small-N strata where the small numbers limit the
ability of intersectional models to disaggregate
outcomes.

MAIHDA offers significant potential for mod-
eling intersecting social identities, but its empiri-
cal validation requires further simulation studies.
Prior work has used simplified simulations (Bell,
Holman, and Jones 2019; Evans et al. 2020; Liz-
otte et al. 2020) or focused on health outcomes
(Mahendran, Lizotte, and Bauer 2022a, 2022b),
leaving a gap in demonstrating MAIHDA’s effec-
tiveness in educational settings. Specifically, there
is a need to show how MAIHDA can enhance
prediction accuracy for educational strata, particu-
larly when examining smaller sample sizes. Addi-
tionally, simulations have yet to explore MAIHDA’s
application to education’s hierarchical data structure,

such as measurements within students within
courses within schools.

In our study, we compare MAIHDA and fixed-
effects models to evaluate their performance in
analyzing intersectional social strata outcomes.
We use the Force Concept Inventory (FCI; Hes-
tenes, Wells, and Swackhamer 1992) for our sim-
ulations, set against the backdrop of physics—a
field noted for its inequities (Brewe and Sawtelle
2016). Our simulations, reflective of actual strata
performance and participation, incorporate stu-
dents within courses, course-level variation, and
varied sample sizes typical of science equity
research (Van Dusen and Nissen 2022). Although
we simplified course-level variation, we meticu-
lously modeled the common educational scenario
of students nested within courses to understand
its influence on outcome predictions (Van Dusen
and Nissen 2019).

To understand MAIHDA’s efficacy for exam-
ining outcomes for intersectional social strata,
we asked the following three research questions:

Research Question 1: What are typical strata
representation rates and outcomes in phys-
ics research-based assessments?

Research Question 2: To what extent do
MAIHDA models create more accurate pre-
dicted strata outcomes than fixed-effects
models?

Research Question 3: To what extent do
MAIHDA models allow for the modeling
of smaller strata sample sizes?

INTERSECTIONALITY IN STEM
HIGHER EDUCATION

Most intersectional research in STEM higher edu-
cation has used qualitative methods to investigate
the double bind that racism and sexism pose to

Figure 1. Multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) nesting
students within k strata.
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women of color in STEM fields. These studies
reveal the covert norms and expectations of these
disciplines, such as the emphasis on mastery, com-
petitiveness, and individualism, that dispropor-
tionately exclude women of color (Carter et al.
2019; Carlone and Johnson, 2007; Cochran,
Boveda, and Prescod-Weinstein 2020; Dawson,
2019; Ireland et al., 2018; McGee 2023; Ong
2023; Traweek 2009; Womack et al. 2023). Such
norms not only further marginalize multiply mar-
ginalized groups, but they also allow White fac-
ulty to profess inclusivity while perpetuating
color-evasive racism, undermining the struggles
against racism and sexism faced by women of
color (Dancy and Hodari 2023; Fries-Britt et al.,
2010; 2013; King, Russo-Tait, and Andrews
2023; Robertson et al. 2023).

The few quantitative studies in STEM higher
education that evoke intersectionality use interac-
tion terms to build intersectional models (Van
Dusen and Nissen 2022). These studies have found
meaningful differences in content knowledge and
beliefs before instruction (Nissen, Horses, and
Dusen, 2021; Van Dusen and Nissen 2020b; Van
Dusen et al. 2021), opportunities and performance
in AP physics and chemistry courses (Krakehl and
Kelly 2021; Palermo, Kelly, and Krakehl 2022),
and inequities in course failure rates (Van Dusen
and Nissen 2020a) that represent the educational
debt American society owes to Black, Brown,
Indigenous, and poor students (Ladson-Billings
2006) and women in STEM. Yet the common
use of p-value cutoffs to exclude interaction terms
and small sample sizes results in many studies not
building intersectional models at all (Stewart et al.
2021; Van Dusen and Nissen 2022).

APPROACHES TO MODELING
INTERSECTIONALITY

Fixed-Effects Approach
Bauer (2014) notes that despite their mutual
enhancement potential, intersectionality theory
and quantitative methods have not fully con-
verged. Health researchers have recognized this
gap, acknowledging the complexity of inequities
and the need for quantitative analysis to address
these issues. In education studies, quantitatively
applying intersectionality has provided insights by
exploring how intersecting identities (race, gender,
socioeconomic status) and their power dynamics

affect academic outcomes (Riegle-Crumb and
Grodsky 2010), disciplinary measures (Morris and
Perry 2017), and financial planning for college
(Quadlin and Conwell 2021). Intersectionality
research also includes often overlooked factors,
such as body size, alongside race and sex on educa-
tion (Branigan 2017), showcasing the theory’s
breadth in examining diverse social strata effects.

In their examination of quantitative intersec-
tional research, Mena and Bolte (2019) found
that intersections in health studies are often ana-
lyzed using regression models that include interac-
tion terms or through stratified analysis, a practice
confirmed by Bauer et al. (2021) across various
fields. This approach involves integrating interac-
tion terms (e.g., Gender 3 Race) into regression
equations to investigate the nuanced effects of
intersecting identity strata (Evans 2019). For exam-
ple, Conwell (2021) utilized cubic regression with
intersectional terms, such as race and income, to
study their effect on children’s math scores. Simi-
larly, Riegle-Crumb and Grodsky (2010) used mul-
tivariate regression to explore interactions between
ethnicity and various socioeconomic factors, dem-
onstrating the methodology’s applicability in
understanding complex social dynamics.

Researchers have also recognized that these
intersectional approaches can address questions
involving nested data and data that evaluate inter-
vention treatments. For instance, Morris and Perry
(2017) studied the interaction of race and gender
on office referrals. They conducted a series of
models including an interaction term for race/eth-
nicity and gender and using a three-level model,
with observations (Level 1) nested within students
(Level 2) nested within schools (Level 3).

Problems With Fixed-Effects
Approaches
Using interaction terms to analyze intersectional
social strata, although insightful, faces challenges
with scalability and precision as the number of
strata increases (Evans et al. 2018). Moreover,
these approaches often require large data sets, typ-
ically over 1,000 students (Bauer et al. 2021). The
necessity for ample sample sizes to adequately
represent and disaggregate each strata complicates
the examination of intersectionality, especially in
studies with diverse programs or treatments. For
example, Riegle-Crumb and Grodsky (2010) tack-
led mathematical achievement disparities by
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conducting separate analyses for students in differ-
ent levels of math courses using intersectional
terms. This division dilutes statistical power,
amplifies model uncertainty, and complicates the
detection of inequities among strata.

MAIHDA

The challenges associated with fixed effects and
interaction terms in intersectional studies highlight
logistical and conceptual issues. Scott and Siltanen
(2017) critiqued the alignment of multiple regres-
sion, a prevalent method in intersectional research,
with the core principles of intersectionality,
emphasizing the importance of contextual sensi-
tivity, open-ended examination of inequities, and
acknowledgment of the multifaceted and multilay-
ered nature of inequity. They argued that tradi-
tional regression methods fall short of capturing
these intricacies, recommending instead a focus
on data that contextualize individuals within
broader settings. Despite slow adoption, emerging
evidence from simulations indicates that
MAIHDA (Merlo 2018) could offer a more fitting
approach by effectively incorporating these inter-
sectional considerations. MAIHDA uses ‘‘[h]ier-
archical and multilevel models to study large
numbers of interactions and intersectional identities
while partitioning the total variance between two
levels—the between-strata (or between-category)
level and the within-strata (or within-category)
level’’ (Evans et al. 2018:64).

The idea of using MAIHDA for intersectional
analyses originated in Evans’s (2015) dissertation
and was further explored by Evans et al. (2018) in
the context of health inequities. Their findings
indicate MAIHDA’s superiority over traditional
fixed-effects methods in handling intersectional
terms for several reasons: MAIHDA simplifies
the inclusion of additional intersectional terms,
improves accuracy for smaller strata, effectively
considers the effects on both multiply marginal-
ized and partially privileged individuals, offers
more insightful statistics than merely the signifi-
cance of interaction terms, and facilitates analysis
of within-group differences. MAIHDA’s multi-
level structure also allows for the incorporation
of experimental designs into the analysis, enhanc-
ing its capability to dissect complex data. Evans
et al. underscored MAIHDA’s efficiency by com-
paring Bayesian information criterion (BIC)
scores between fixed-effects and MAIHDA

models across simulations with strata numbers
ranging from 4 to 384; they found MAIHDA mod-
els maintained consistent BIC scores despite
increasing strata, unlike the exponential increase
observed in fixed-effects models.

Independently, Jones, Johnston, and Manley
(2016) examined an analogous technique to
MAIHDA. They modeled voting rates using fixed
effects for primary terms and random effects to
account for interaction terms. They found that
using random effects improved the level of detail
in the model and protected researchers from over-
interpreting their data.

Since these initial publications, simulation
studies have examined different aspects of MAIH-
DA’s efficacy and utility. This work evaluates
MAIHDA’s performance compared to alternatives
in reducing false positives and yielding accurate
models with varying sample sizes. Bell et al.
(2019), for example, performed a simulation study
examining false-positive rates for intersectional
terms in fixed-effects and MAIHDA models.
They found that MAIHDA models produced fewer
false positives than did saturated fixed-effects
models.

Lizotte et al. (2020) demonstrated that when
given large sample sizes (100,000) and large strata
populations (3,125), MAIHDA models and fixed-
effects models were both highly accurate. They
proposed that Evans (2019) had misinterpreted
the MAIHDA model terms. Specifically, they
claimed that the fixed effects had been mistaken
for the grand means and that the residual terms
had been mistaken for the intersectional effects.
Evans et al. (2020) rebutted this suggestion. Using
a simulation study, they demonstrated that, as with
all multilevel models, the fixed effects in
MAIDHA models are precision-weighted grand
means, which, under some conditions, will be
equal to the grand means.

In their comparative simulation studies,
Mahendran et al. (2022a, 2022b) evaluated seven
modeling techniques, including cross-classifica-
tion, regression with interactions, MAIHDA, and
various decision trees (CART, CTree, CHAID,
and random forest), for analyzing intersectional
health outcomes. Using logistic regression for
binary outcomes, they discovered that although
some methods could occasionally reach MAIH-
DA’s level of accuracy and sensitivity, MAIHDA
consistently outperformed all other techniques
across different scenarios (Mahendran et al.
2022b). In their follow-up study focused on
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continuous outcomes, random forest emerged as

the most robust, yet MAIHDA was still favored
for its performance across various sample sizes

(Mahendran et al. 2022a). Notably, these studies

shifted from MAIHDA’s usual Bayesian frame-

work to frequentist models, with researchers argu-

ing that the latter offered comparable results with

the advantage of quicker estimation.
Keller et al. (2023) affirmed MAIHDA’s

advantages in education research: MAIHDA could

efficiently scale to higher dimensional data, main-

tain model simplicity, and provide precise esti-

mates for strata with few observations, consistent

with findings in health research. However, they
identified challenges specific to education, such

as the difficulty of gathering sufficiently large

samples to represent diverse intersectional strata

of students. They also highlighted the importance

of investigating MAIHDA’s capacity to handle

education’s inherent nested data structures, such

as students within courses and schools. Evans

(2019) conducted a preliminary examination of
nesting individuals within schools alongside social

strata, but comprehensive studies using cross-

classified multilevel MAIHDA models in educa-

tional contexts remain unexplored.
In this simulation study, we expand on the lit-

erature by creating a realistic model of science stu-

dent outcomes—in which strata composition

varies to mirror likely data sets—and comparing

MAIHDA’s accuracy against fixed-effects models

of varying sample sizes. We improved the sophis-
tication of the simulated data from prior studies by
building it off of large-scale, real-world education
data. We used cross-classified multilevel models
that nest students in courses and social strata, a crit-
ical feature of large-scale educational studies
(DiPrete and Forristal 1994; Niehaus, Campbell,
and Inkelas 2014; Raudenbush and Bryk 1986;
Van Dusen and Nissen 2019). We also examine
how MAIHDA’s improved accuracy can allow
researchers to include more strata in their models
without sacrificing the accuracy of their predictions.

METHODS

To compare the accuracy and precision of fixed-
effects and MAIHDA models across three sample
sizes, our analysis proceeds in four steps (see Fig-
ure 2). Step 1 uses the FCI data to create a true
model of test scores across 20 intersectional iden-
tities. Step 2 simulates data for the true model
1,000 times for each of the three sample sizes.
Step 3 models the data using both fixed-effects
and MAIHDA models. Step 4 compares the true
error (predicted – true score) across the fixed-
effects and MAIHDA models.

Step 1: Data Collection
To achieve a realistic simulation reflective of
actual education research, we utilize simulated

Figure 2. The four steps of our analysis.
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data inspired by real-world data from the Learning
About STEM Student Outcomes (LASSO) plat-
form (Van Dusen 2018). LASSO, an online tool
for STEM education assessment, offers detailed
reports on student performance in core science
subjects, providing anonymized student data for
research purposes with participant consent. The
data set does not capture every institutional con-
text, but it surpasses the representativeness of
data commonly used in studies on science higher
education (Nissen et al. 2021). The Carnegie Clas-
sification of Institutions of Higher Education pub-
lic 2021 database served as the basis for detailing
institution types (see Table 1).

LASSO provided the social identities and pre-
test scores from 5,955 students in 171 courses at
40 institutions on the FCI. To assess the effective-
ness of physics instruction, Hestenes et al. (1992)
developed the FCI to probe student understanding
of Newtonian forces. Researchers have applied
many different quantitative methods to data from
the FCI (see e.g., Eaton and Willoughby 2020).
One strand of this quantitative research focuses
on the fairness of the FCI and its ability to produce
unbiased data across different strata. Morley, Nis-
sen, and Van Dusen (2023) found the FCI was
measurement invariant across the intersection of
10 racial and gender strata, but evidence indicates
that several items on the FCI function differently
for men (Traxler et al. 2018), White men in partic-
ular (Buncher et al. 2021), than for individuals
identifying with other gender or racial strata.
Buncher et al. (working paper), however, con-
cluded that the differences in item performance
across strata were likely due to differences in
construct-relevant background knowledge rather
than bias from construct-irrelevant knowledge.
Nonetheless, researchers often use the FCI to
investigate the effectiveness of instructional tech-
niques (Bruun and Brewe 2013; Caballero et al.

2012; Han et al. 2015; Nissen, Her Many Horses,
et al. 2022; Xiao et al. 2020) and equity in courses
(Brewe, Kramer, and O’Brien 2009; Good, Mar-
ies, and Singh 2019; Van Dusen and Nissen
2020a, 2020b).

Step 2: Data Simulation
To reflect the range of sample sizes commonly
encountered in equity research (Van Dusen and
Nissen 2022), we generated simulated data sets
with 500, 1,000, and 5,000 students, creating
1,000 data sets for each size, totaling 3,000 simu-
lations. In these data sets, each student was placed
within a course comprising 50 students; the course
average scores had a standard deviation of 10
points, given the FCI score range of 0 to 100.
This variability aligns with actual educational
data and represents typical variance seen in educa-
tional studies (Condon, Lavery, and Engle 2016;
Sun and Pan 2014; Van Dusen and Nissen 2019,
2020b). We avoided simulating complex
student–classroom demographics, such as having
men more represented in higher or lower perform-
ing contexts, to maintain the study’s focus. Of the
initial simulations, 44 data sets at the 500-student
sample size were discarded due to having strata
with no data, rendering them unsuitable for analy-
sis with either fixed-effects or MAIHDA models.
This adjustment led to a final count of 2,956
data sets available for our analysis.

Within each simulated data set, we included
strata variables for five racial groups (i.e., Asian
= 14 percent, Black = 6 percent, Hispanic = 7 per-
cent, White = 63 percent, and White Hispanic =
10 percent), two gender groups (i.e., women =
36 percent, men = 64 percent), and two college-
generation groups (i.e., first-generation [FG] =
36 percent, continuing-generation [CG] = 64 per-
cent), creating 20 intersectional social strata

Table 1. Institution Information from Our Data Set.

Total

Type Size Highest Degree Special Designators

Public Private Small Medium Large AA BA MA PhD

Hispanic-
Serving

Institution

Minority-
Serving

Institution

40 25 13 5 15 18 4 5 14 15 11 11

Note: The subcategories do not add up to the total because two institutions were not in the Carnegie Classification of
Institutions of Higher Education public 2021 database.
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combinations. Based on the LASSO data, we set
each strata’s representation rates, true values,
and standard deviations. Table 3 shows the true
score and proportional representation for each
strata and the student-level standard deviations.

The simulation set the proportional representa-
tion of each strata in the data set, but how they
intersected varied across each simulation. For
example, we set 6 percent of students in each sim-
ulation as Black, 36 percent as women, and
36 percent as FG. We assigned each axis of social
identifiers (i.e., race, gender, and FG/CG designa-
tion) independently, meaning we did not ensure
that 36 percent of each racial group were women.
So, although FG Black women made up 0.76 per-
cent (6 percent 3 36 percent 3 36 percent) of
the data on average, in any given simulation, their
representation could range from 0 percent (e.g., if
none of the Black students were women and FG)
to 6 percent (if all the Black students were women
and FG). By allowing the proportion of students in
each strata to vary across simulations, we can
examine the accuracy of predicted outcomes
across a broader range of strata sample sizes.

Our simulation also randomly assigned stu-
dents to courses. For instance, 36 percent of the
population were women, but within any given
course, the share of women could range from
0 to 100 percent. We set the standard deviation
for scores within a strata to be 20 points.

Our student score simulation equation is as
follows:

Scoreij 5 47! 3 3 FGij ! 10 3 womenij ! 6

3 Blackij ! 10 3 Hispanicij 1 2

3 Whiteij 1 3 3 FGij 3 womenij 1 1

3 Whiteij 3 Hispanicij ! 1 3 FGij

3 Blackij 1 2 3 FGij 3 Hispanicij 1 2

3 FGij 3 Whiteij ! 2 3 womenij

3 Blackij 1 1 3 womenij 3 Hispanicij ! 4

3 womenij 3 Whiteij ! 1 3 FGij 3 Whiteij

3 Hispanicij 1 5 3 womenij 3 Whiteij

3 Hispanicij 1 4 3 FGij 3 womenij

3 Blackij 1 1 3 FGij 3 womenij 3 Whiteij ! 1

3 FGij 3 womenij 3 Whiteij 3 Hispanicij

1 u coursej 1 ri

u coursej;N 0;10ð Þ Level 2ð Þ
ri;N 0;20ð Þ Level 1ð Þ

ð1Þ

Step 3: Modeling
We analyzed each data set using a fixed-effects
model and a MAIHDA model. Our fixed-effects
intersectional model (see Figure 3) is a frequentist
multilevel model that nests students (Level 1)
within courses (Level 2). The fixed-effects inter-
sectional model includes an interaction term for
each combination of race, gender, and college-
generation term:

Scoreij 5 b0 1 b1Blackij 1 b2Hispanicij

1 b3Whiteij 1 b4Hispanicij x Whiteij

1 Womanij x ðb5 1 b6Blackij

1 b7Hispanicij 1 b8Whiteij

1 b9Hispanicij x WhiteijÞ
1 FGij x ðb10 1 b11Blackij

1 b12Hispanicij 1 b13Whiteij

1 b14Hispanicij x WhiteijÞ
1 FGij x Womanij x ðb15 1 b16Blackij

1 b17Hispanicij 1 b18Whiteij

1 b19Hispanicij x WhiteijÞ
1 u coursej 1 eij

u coursej;Nð0;s2
u courseÞ ðLevel 2Þ

eij;Nð0;s2
eÞ ðLevel 1Þ

ð2Þ

Our MAIHDA model (see Figure 4) is a Bayes-
ian cross-classified multilevel model that nests
students (Level 1) within courses (Level 2a) and
strata (Level 2b):

Scoreiðj1;j2Þ 5 b0 1 b1Blackðj1;j2Þ

1 b2Hispanicðj1;j2Þ1 b3Whiteðj1;j2Þ

1 b4Womanðj1;j2Þ1 b5FGðj1;j2Þ

1 u coursej1 1 u strataj2 1 eiðj1;j2Þ

u coursej1 ;Nð0;s2
u courseÞ ðLevel 2aÞ

u strataj2 ;Nð0;s2
u strataÞ ðLevel 2bÞ

eiðj1;j2Þ;Nð0;s2
eÞ ðLevel 1Þ

ð3Þ

We follow Fielding and Goldstein’s (2006)
notation for multilevel models and cross-classified
multilevel model equations. For example, the sub-
scripts in Scoreiðj1;j2Þ refer to the score for the ith
student in the j1th course and the j2th strata. j1
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runs from 1 to n, where n represents the total num-
ber of courses. j2 runs from 1 to k, where k repre-
sents the total number of strata. n and k are the
number of unique values in the course and strata
variables. b0 represents the score for CG Asian
men. eij represents the student-level error for a spe-
cific score. u coursej represents the course-level
error for each course. In addition to including stu-
dent- and course-level error terms (eiðj1 ;j2Þ and
u coursej1 ) in the fixed-effects model, the
MAIHDA equation includes a strata error term
(u strataj2 ). None of the variables are centered.

To understand the structure of the variance of
our data, we ran an unconditional cross-classified
model with no fixed effects. We use this model
to calculate the variance partition coefficient
(VPC) and the proportional change in variance
(PCV). The VPC measures the variance attributed
to a level in a multilevel model and is sometimes

called the intraclass correlation coefficient. In
most MAIHDA models, the VPC score for strata
usually less than 10 percent (Evans et al. 2020).
The PCV measures the total between-stratum var-
iation explained by including additive main
effects. Our unconditional cross-classified multi-
level model is written as follows:

Scoreiðj1;j2Þ5 b0 1 u coursej1 1 u strataj2

1 eiðj1;j2Þ

u coursej1 ;Nð0;s2
u courseÞ ðLevel 2aÞ

u strataj2 ;Nð0;s2
u strataÞ ðLevel 2bÞ

eiðj1;j2Þ;Nð0;s2
eÞ ðLevel 1Þ

ð4Þ
Comparing the variances from the real-world

data with our simulated data shows that the share
of the variance accounted for by strata (VPC) is

Figure 4. The multilevel structure of our cross-classified MAIHDA model with students (Level 1) nested
within courses (Level 2a) and strata (Level 2b).
Note: The strata lie at the intersections of social identity variables included in the model, and the model includes an
error term for each strata. MAIHDA = multilevel analysis of individual heterogeneity and discriminatory accuracy.

Figure 3. The multilevel structure of our fixed-effects model with students (Level 1) nested within
courses (Level 2).

Van Dusen et al. 9



very similar in both data sets (see Table 2). Includ-
ing the fixed-effects terms in the MAIHDA model
also accounts for similar shares of the variance due
to strata (PCV) for the real-world and simulated
data sets. The one place where the two data sets
diverge is the share of the variance accounted
for by the courses. We reran our simulation with
a smaller standard deviation in course scores (4.5
points). This made the VPCcourse values match
the real-world data, but it did not meaningfully
affect any of the group predicted outcomes. This
shows that our results are robust across a range
of variance at the course level. Note, however,
that our course-level variance does not have any
structure (i.e., there is no correlation between
course and strata-level variances).

Our unconditional model shows the VPCstrata is
9 percent, within the typical range reported (Evans
et al. 2020). The PCVstrata in the MAIHDA model
is 79.6 percent, which means the primary terms in
our MAIHDA model account for 79.6 percent of
the variance in the strata level. It also means that
20.4 percent of the variance between strata can
be attributed to intersectional effects.

Society’s educational debts owed to marginal-
ized groups were calculated by subtracting the
mean score for a strata from those of CG White
men.

Step 4: Model Comparison
To compare the precision and accuracy of
MAIHDA and fixed-effects models and explore

minimum sample sizes for robust estimation, we
calculated the true error in the prediction for
each of the 20 strata. The true error is the differ-
ence between the predicted and true scores (esti-
mated score – true score). We compared their
mean absolute true errors to determine which
modeling technique yields more accurate predic-
tions. To determine which modeling technique
would allow for the modeling of smaller strata
sample sizes, we examined the mean absolute
true error for strata with sample sizes of 20 or
fewer.

FINDINGS

Research Question 1: What Are
Typical Strata Representation
Rates and Outcomes on Physics
Research-Based Assessments?
LASSO provided data from 5,955 students in 171
courses at 40 institutions on the FCI. These data
include 20 intersectional social strata (see Table
3). The share of the sample for a strata ranges
from 26 percent (CG White men) to 1 percent
(CG Black women, FG Black men, FG Black
women, FG Hispanic women, and FG White His-
panic women). The mean score on the assessment
for a strata ranges from 49 points (CG White men)
to 28 points (CG Hispanic women). Society’s edu-
cational debts range from 21 points (CG Hispanic
women) to 2 points (CG Asian men).

Table 2. The Variance, Variance Partition Coefficient, and Proportional Change in Variance for the Real-
World and Simulated Data Sets.

s2
e s2

u course s2
u strata VPCcourse VPCstrata PCVstrata

Real-world data
Unconditional CCMM model 423.4 17.4 53.8 3.6% 11.2% —
MAIHDA model 415.8 17.7 9.2 4.1% 2.5% 78.0%

Simulated data
Unconditional CCMM model 399.9 109.7 45.7 20% 9% —
MAIHDA model 399.6 109.6 6.5 21% 2% 79.6%

Note: s2
e = student-level variance.; s2

u course2 = course-level variance.; s2
u strata = strata-level variance; VPCcourse =

course-level variance partition coefficient, converted to a percentage.; VPCstrata = strata-level variance partition
coefficient, converted to a percentage.; PCVstrata = strata-level proportional change in variance, converted to
a percentage. The proportional change in variance represents the percentage of the total between-strata variation
that is explained by inclusion of primary terms. CCMM = Cross-classified multilevel model; MAIHDA = multilevel
analysis of individual heterogeneity and discriminatory accuracy.
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Research Question 2: To What Extent
Do MAIHDA Models Create More
Accurate Predicted Strata Outcomes
Than Fixed-Effects Models?

We compare the true errors of the two modeling
methods to determine their accuracy. Table 4
shows the mean absolute true error disaggregated
by model, strata, and total sample size. The
MAIHDA model has smaller mean absolute true
errors in 56 of the 60 cases (i.e., 20 strata in
each of the three total sample sizes). In the four
exceptions in which the MAIHDA model is less
accurate on average, the mean absolute true errors
are only marginally larger, ranging from 0.0 to 0.4
points. As the total sample sizes increase, the
amount by which MAIHDA outperforms the
fixed-effects model decreases. MAIHDA’s mean
absolute true error is 31 percent (1.7 points)
smaller than the fixed-effects model when the total
sample size is 500 but only 13 percent (0.2 points)
smaller when the sample size is 5,000.

The largest mean absolute true error for the
fixed-effects model is for FG Black women (9.3

points), who also have the smallest mean N
(3.7). In the MAIHDA model, the mean absolute
true error is reduced to 4.9 points. Given that the
standard deviation for student scores is 20 points,
the shift from fixed-effects to MAIHDA models
decreases the mean absolute true error from 0.47
SD to 0.25 SD.

To understand how strata sample sizes affect
the accuracy of the models, we examine the true
error for each strata prediction for each model.
Figure 5 shows the true error for all the predictions
versus each model’s strata sample size. Both mod-
els are similarly accurate when they have larger
total and strata sample sizes. The magnitude of
the true errors increases for both models with
smaller total sample sizes and strata sample sizes.
Where the models differ, however, is that the mag-
nitude of the true error increases more quickly in
the fixed-effects model as the strata sample sizes
decrease. The improvement in performance for
MAIHDA over fixed-effects models is most
apparent for the strata with the smallest sample
size (i.e., FG Black women). The reduction in
the mean absolute true error for FG Black women
when using MAIHDA ranges from 47 percent

Table 3. The Share of the Total Sample, True Score, and Student-Level Standard Deviation for Each
Intersectional Social Strata as Set by the Simulation.

Intersectional Social Strata Share of Sample Score (points) Society’s Educational Debt (points)

CG Asian men 6% 47 2
CG Asian women 3% 37 12
CG Black men 2% 41 8
CG Black women 1% 29 20
CG Hispanic men 3% 37 12
CG Hispanic women 2% 28 21
CG White Hispanic men 4% 40 9
CG White Hispanic women 2% 32 17
CG White men 26% 49 —
CG White women 15% 35 14
FG Asian men 3% 44 5
FG Asian women 2% 37 12
FG Black men 1% 37 12
FG Black women 1% 32 17
FG Hispanic men 2% 36 13
FG Hispanic women 1% 30 19
FG White Hispanic men 2% 40 9
FG White Hispanic women 1% 35 14
FG White men 15% 48 1
FG White women 8% 38 11

Note: CG = continuing-generation; FG = first-generation.

Van Dusen et al. 11
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with a total sample size of 500 to 25 percent with
a total sample size of 5,000.

Research Question 3: To What Extent
Do MAIHDA Models Allow for
Modeling of Smaller Strata Sample
Sizes?
To understand the differences in each model’s
ability to handle smaller strata sample sizes, we
examine the absolute mean and mean of the true
error for each strata sample size (see Table 5). Fig-
ure 6 shows the mean absolute true error values for
strata sample sizes ranging from 1 to 20 across
total sample sizes and modeling techniques. We
limit the figure to this range, as Simmons, Nelson,
and Simonsohn (2016) argue, using 20 as a mini-
mum strata sample size. Figure 6 includes a dashed
line as a comparison tool indicating the mean

absolute true error for the fixed-effects model
when the strata sample size is 20 and the total sam-
ple size is 500 (4.4). For the MAIHDA model, the
mean absolute true error does not reach 4.4 until
the strata sample sizes are reduced to 5 or fewer.

For models with very small strata sample sizes,
shrinkage will decrease the size of the strata’s var-
iance term. This smaller variance term leads to the
strata’s predicted outcomes being closer to the pre-
diction produced by only adding the model’s pri-
mary coefficients for the strata. In our MAIHDA
models, when strata sample sizes fall below 10
individuals, we begin to have a small but consis-
tent negative bias in the mean true error scores
(see Table 5). The variance causes this negative
bias for the least represented strata (FG Black
women) to be positive, on average. In other words,
the additive effects of the coefficients for the inter-
cept, FG, Black, and women predict scores lower
than the true score for FG Black women. Having

Table 5. Mean and Absolute Mean of the True Error Values for Each Strata Sample Size Disaggregated by
Model Type and Total Sample Size.

Strata
Sample Size

Total Sample Size = 500 Total Sample Size = 1,000

Traditional MAIHDA Traditional MAIHDA

Absolute
Mean

True Error

Mean
True
Error

Absolute
Mean

True Error

Mean
True
Error

Absolute
Mean

True Error

Mean
True
Error

Absolute
Mean

True Error

Mean
True
Error

1 15.68 20.68 5.29 22.93 13.17 2.73 5.56 23.58
2 11.16 0.59 4.70 21.77 11.26 2.69 2.31 20.53
3 9.54 20.41 4.82 21.35 8.22 21.63 3.09 21.42
4 8.59 20.16 4.62 21.08 8.69 0.28 3.59 22.34
5 7.55 20.05 4.41 20.73 8.27 1.50 3.75 21.34
6 7.03 20.43 4.24 20.70 6.16 20.26 3.40 21.88
7 6.24 20.16 4.07 20.37 6.27 20.29 3.50 21.70
8 6.16 20.25 4.16 20.43 5.98 20.01 3.28 21.03
9 5.87 20.14 4.01 20.26 5.43 0.11 3.36 21.06
10 5.46 20.05 3.84 20.18 5.13 20.10 3.33 20.49
11 5.51 20.35 3.93 20.51 5.33 0.67 3.56 20.23
12 5.34 0.02 3.84 20.03 5.07 0.04 3.44 20.18
13 4.75 0.24 3.60 0.17 4.81 20.21 3.33 20.34
14 4.82 20.25 3.63 20.16 4.58 20.05 3.19 0.02
15 4.73 20.38 3.62 20.14 4.56 20.34 3.08 20.06
16 4.85 20.21 3.66 20.06 4.36 20.09 2.99 20.08
17 4.94 20.25 3.73 20.06 4.21 0.16 3.02 0.42
18 4.76 0.06 3.66 0.14 4.10 0.67 2.88 0.49
19 5.04 0.48 3.93 0.59 4.21 0.47 2.91 20.09
20 4.39 20.19 3.40 20.01 4.14 0.31 2.80 0.15

Note: MAIHDA = multilevel analysis of individual heterogeneity and discriminatory accuracy.
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fewer data for that strata regresses their predicted
score closer to the additive score from the model
and creates a negative bias.

DISCUSSION

A central goal of intersectional modeling is to dis-
aggregate intersectional social strata outcomes as
much as possible to represent the diversity of lived
experiences. MAIHDA was developed to support
further disaggregation of data across strata than
is possible with fixed-effects regression models.
To identify whether MAIHDA is superior to
fixed-effects models at predicting outcomes for
small strata, we compared the accuracy of both
modeling techniques on simulated data sets that
mirror real-world physics student outcomes.

Our findings show meaningful inequities in
physics student scores on the FCI and that
MAIHDA creates more accurate models of these
inequities than do fixed-effects models (Table 4
and Figure 5). When using the MAIHDA model
rather than the fixed-effects model, we see the
most significant improvements in accuracy with
predictions for small total sample sizes and strata
with smaller sample sizes. These improvements
support the goal of using MAIDHA to create mod-
els with smaller strata, which allows for more
strata to reflect the scope of intersectional experi-
ences within a population.

Future Research
Developing and running the MAIHDA and the

fixed-effects models took similar effort with our

simulated data set. However, one feature of our
simulated data that differed from many educa-

tional data sets is that it lacked any missing data.

In these situations, multiple imputation is often

recommended to maximize statistical power and
limit the introduction of bias (Nissen, Donatello,

and Van Dusen 2019; Rubin 1996). Examining

multiple imputed data sets can complicate analy-
ses. Future research should compare the practical-

ity and efficacy of using MAIHDA and fixed-

effect models with a real-world data set that

includes missing values.
Although we did not examine it in this study,

the Bayesian nature of MAIHDA models means
their accuracy could be improved through

informed priors. Informed priors allow researchers

to directly include findings from prior research into

their models, similar to what is done in a meta-anal-
ysis. Although an investigation may not have the

statistical power to include a particular strata in

a model, if it can draw on findings across other

investigations, it can create reasonably accurate
predictions for even smaller strata. Determining

the effect of using informed priors with MAIHDA

models will require further research.
This analysis did not examine how to account

for interaction effects between strata and other

Figure 5. Logarithmic scatter plot of the true error for each predicted strata outcome versus the strata
sample size for each model.
Note: The shade of the dots represents the total sample sizes. Predicted values were jittered to enhance visibility.
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factors. For example, when using a fixed-effects
model to determine the differential effect of
a classroom intervention across strata, researchers
can add fixed interaction terms between the inter-
vention and intersectional social strata variables.
In a MAIHDA model, however, the interaction
effect is between a fixed variable (e.g., the inter-
vention) and a random variable (e.g., intersec-
tional social strata). It must be included as a -
random-effect term. Modeling programs can run
such models, but determining the effect of moving
these interaction terms from fixed to random will
require future research. Furthermore, this study
examined continuous outcomes. The efficacy we
found likely exists for logistic models of categor-
ical outcomes, but a simulation study is warranted
to test it empirically.

This study provides proof that MAIHDA can
work with cross-classified multilevel models, but
the student–course structures used in our model
are reasonably simple. Further research is needed
to examine the efficacy of MAIHDA in modeling
student outcomes with more complex student,
course, and institution structures (e.g., creating
subsets of courses that match the makeup of
high-, medium-, and low-selectivity institutions).
Future simulation studies could also examine the
effect of creating cross-classified multilevel mod-
els with levels for course and strata versus simply
including the strata level.

CONCLUSIONS

The accuracy improvements observed by using
MAIHDA over fixed-effects models are strong
evidence that MAIHDA can improve the quality
of predicted outcomes across intersectional social
strata. These results also suggest that researchers
may be able to disaggregate their models further,
increasing the number of distinct strata repre-
sented by accommodating smaller strata sizes.
Our examination of the mean absolute true error
for small strata sample sizes bore out this idea
(Table 5 and Figure 6). One recommended value
for minimum strata sample sizes with fixed-effects
models is 20 (Simmons et al. 2016). For our fixed-
effects models, the mean absolute true error was
very similar for total sample sizes of 500 and
1,000 when the strata sample sizes were 20 or
fewer. The MAIHDA model maintained an accu-
racy equal to or better than those observed in the
fixed-effects model until the sample sizes were 5
or fewer. These smaller standard error values indi-
cate that researchers could model strata sample
sizes below 20 without meaningful compromises
in accuracy when using MAIHDA. We refrain
from making specific minimum strata sample
size recommendations because the context of
each research project will determine how much
potential error a researcher is willing to entertain
to increase the number of strata a model includes.

Figure 6. Plot of the mean absolute true error values by strata sample size across total sample size and
modeling techniques.
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Beyond being a more effective methodological
tool, MAIHDA can change how intersectionality
is theorized and reified in quantitative research.
Introducing tools to a system can transform cogni-
tive tasks (Hutchins 1995a, 1995b) and lead to
novel outcomes (Alvesson and Kärreman, 2007;
Roth and Lee 2007). By allowing models to
include strata with a sample size of 1, MAIHDA
can include all participants as they self-identify
without aggregating groups or engaging in data
erasure. Opening up this methodological possibil-
ity will require researchers to reenvision intersec-
tional theory and its place in quantitative research.

Our findings provide strong evidence of the
superiority of using MAIHDA when modeling
intersectional outcomes, but MAIHDA is appro-
priate for only some scenarios. Specifically,
MAIHDA requires a sufficient number of strata
to offer improved predictions. Evans et al.
(2018) recommend having at least 20 strata in
a model before using them as a level to nest stu-
dents to ensure the model has sufficient Level 2
random effects. Researchers have begun to
explore MAIHDA models with fewer strata (e.g.,
Evans 2019; Silva and Evans 2020), but the effect
of having fewer strata in a model is currently
unknown. Some education equity research uses
models that include 20 or more strata (e.g., Jang
2018; Nissen, Van Dusen, and Kukday, 2022;
Van Dusen, Nissen, and Johnson 2024), but
much of this work does not (Van Dusen and Nis-
sen 2022). With the increased use of novel model-
ing methods, large-scale data sets (e.g., LASSO),
and intersectional perspectives in quantitative
research (Wofford and Winkler 2022), the trend
may be shifting to models that offer more nuanced
depictions of marginalized students’ outcomes
through the inclusion of more strata.

Although researchers are investigating the
implications of using MAIHDA to create intersec-
tional models, the statistical technique of blending
fixed and random effects to create predicted out-
comes is applicable across many areas of quantita-
tive research. Just as Jones et al. (2016) used an
analogous technique to MAIHDA to investigate
voting rates, judiciously replacing some fixed
effects with random effects can improve model
accuracy. When using MAIHDA, researchers
have primarily examined replacing interaction
terms with random effects (Keller et al. 2023),
but the most efficacious replacement of fixed
effects will be contextually dependent. Additional
research is needed to identify the best method for

selecting fixed-effect terms in MAIHDA or analo-
gous nonintersectional models.

Equity-minded researchers are cautious about
treating strata monolithically. Intersectional
research that considers variables such as those
introduced here somewhat addresses this concern,
but more work is needed to explore the potential
for disaggregation of data according to more spe-

cific racial designations, such as regional Hispanic
populations. In this work, we illustrate the poten-
tial of MAIHDA using demographic data likely
to exist in many surveys that ask standard demo-
graphic questions to report on broad categories
related to race, gender, and socioeconomic
identification (or its proxies, such as college gen-
eration). More work is needed to illustrate the
potential of MAIHDA—and quantitative intersec-
tionality work generally—using more precise
demographic data, such as immigration genera-
tion, family country of origin, or country region.
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