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Researchers often frame quantitative research as objective, but every step in data collection and analy-
sis can bias findings in often unexamined ways. In this investigation, we examined how the process 
of selecting variables to include in regression models (model specification) can bias findings about 
inequities in science and math student outcomes. We identified the four most used methods for model 
specification in discipline-based education research about equity: a priori, statistical significance, 
variance explained, and information criterion. Using a quantitative critical perspective that blends 
statistical theory with critical theory, we reanalyzed the data from a prior publication using each of 
the four methods and compared the findings from each. We concluded that using information criterion 
produced models that best aligned with our quantitative critical perspective’s emphasis on intersec-
tionality and models with more accurate coefficients and uncertainties. Based on these findings, we 
recommend researchers use information criterion for specifying models about inequities in STEM 
student outcomes. 

KEY WORDS: QuantCrit, model specification, equity, quantitative methods, 
regression 

1. INTRODUCTION

Researchers and policymakers often view quantitative research as objective and fact-
based, particularly in comparison to qualitative research (Stage, 2007). We see evi-
dence of this perspective in the prevalence of quantitative analysis driving education 
policy (Carver, 1975; Darling-Hammond et al., 2007; Gillborn et al., 2018). Biases, 
however, influence quantitative findings throughout the process of data collection, 
analyses, and interpretation (Stage, 2007). Researchers rarely interrogate their meth-
ods and regularly ignore their potential to bias findings. For example, mortgage lend-
ers cannot use race when reviewing a loan application, but location information can 
perpetuate racist oppression in housing through redlining (Rothstein, 2017; O’Neil, 
2016). These unexamined biases are particularly problematic in equity research given 
social science statistics’ roots in the eugenics movement of the late 19th and early 20th 
century (Zuberi, 2001; Zuberi and Bonilla-Silva, 2008). The eugenics movement used 
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the guise of science and objectivity to advance the racist and classist ideas of white 
superiority (McGee, 2020).

This investigation examined how model specification practices in developing re-
gression models of inequities in student outcomes can influence findings on STEM 
student equity. Model specification identifies a single “best” model from all of the 
possible models. We begin by explaining our conceptual framework, which uses a 
quantitative critical framework (QuantCrit) (Stage, 2007; López et al., 2018) to blend 
critical theory (Ladson-Billings, 2013; West, 1995) with statistical theory. Then, we 
use our conceptual framework to identify model specification goals in discipline-
based education research (DBER) investigations of equity. Finally, using these goals 
to evaluate four model specification methods commonly used in DBER allows us to 
identify a preferred method. To evaluate these four model specification methods, we 
reanalyze data from a prior publication on equity in DBER (Van Dusen and Nissen, 
2020) using each method.

To aid readers, we have included a list of statistical modeling terms in Table 1.

1.1 Objectives

This article demonstrates how subjective decisions in building quantitative models shape 
the results those models produce. To this end, we use a QuantCrit framework to identify 
goals for model specification in equity research, evaluate how well methods commonly 
used in DBER achieve those goals, and illustrate how these methods shape findings. 
Research questions should drive the analytical methods used in an investigation (Ding, 
2019; Shmueli, 2010). In this article, we focus on work designed to describe or explain 
trends in existing datasets, rather than work designed to make predictions about future 
outcomes (Shmueli, 2010).

1.	Use critical theory to identify model specification goals in DBER investigations 
of equity. Because critical theory rejects the objectivity of quantitative research, it 
provides a framework for identifying the model specification tensions and goals 
in DBER investigation of equity.

2.	Evaluate how well standard DBER model specification methods met the goals of 
model specification identified in our first objective. To identify standard DBER 
model specification methods and the statistical processes that underpin them, we 
will review studies from a cross section of DBER journals. We will evaluate each 
method’s efficacy to meet the identified goals of model specification for DBER 
investigations of equity.

3.	Illustrate how model specification methods can impact findings in DBER 
investigations of equity. We will reanalyze the data from our prior study of 
equity in physics student learning (Van Dusen and Nissen, 2020) using the 
standard model specification methods. Comparing and contrasting the findings 
from each method will demonstrate how model specification practices can bias 
findings.
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TABLE 1: Statistical modeling terms
Term Definition
Model An equation that describes a relationship between variables.
Linear regression A linear equation that represents the relationship between an 

outcome variable and predictor variable(s).
Hierarchical linear 
regression

A linear regression method that accounts for the nested (i.e., 
hierarchical) nature of the data (e.g., students nested in courses).

Outcome/dependent 
variable

The variable representing the measured outcome (e.g., student 
learning, graduation rates, or attitudes).

Predictor/
independent variable

The variables that may correlate with the outcome variable that the 
model accounts for or measures the impact of (e.g., race, gender, 

treatment/control, or ACT scores).
Coefficient Each predictor variable is assigned a coefficient that estimates its 

relationship to the outcome variable.
Standard error A measure of an estimate’s precision/uncertainty that is often used 

to create compatibility intervals and calculate p-values.
Compatibility intervals 
(i.e., confidence 
intervals)

A measure of an estimate’s precision/uncertainty. Often mistakenly 
interpreted as meaning that there’s a 95% probability that the 

interval contains the true value (Amrhein et al., 2019).
p-value The probability of obtaining test results at least as extreme as the 

observed results, under the assumption that the null hypothesis 
is correct, P(observation|H0). Does not inform the odds that the 

hypothesis is correct, P(H0|observation) (Nuzzo, 2014).
Variance A measure of the spread of the data around the predicted values 

from the model in squared units. For the simplest model, this is the 
spread around the mean.

Standard deviation The square root of the variance. It measures the spread of the data 
in the same units as the data.

Variance explained (R) The percentage decrease in the variance with the inclusion of 
predictor variables, often measured by R2.

Adjusted R2 A measure of variance explained with an adjustment for additional 
predictor variables. The adjusted R2 increases only if the new 
variable improves the model more than would be expected by 

chance.
Additional variance 
explained 

The change in R2 associated with the addition of a predictor 
variable. This is similar to but distinct from partial variance 

explained.
Model mis-specification Models that either include nonexplanatory variables 

(overspecification) or exclude important variables 
(underspecification) and generate biased estimates and standard 

errors.
a priori Reasoning from theoretical deduction rather than from observation.
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2. AUTHOR POSITIONALITIES

The following is the first author’s positionality statement: I identify as a White* cisgen-
der, heterosexual man. I was raised in a pair of lower-income households, but I now earn 
an upper-middle-class income. I hold an undergraduate degree in physics and a PhD in 
education. I was an assistant professor at a teaching-intensive, Hispanic serving institu-
tion but now am an assistant professor at a research-intensive, predominantly White 
institution. My experiences working with minoritized† students, particularly the Latino 
and Latina students I have had the honor to mentor as learning assistants (Otero, 2015) 
and as researchers, have motivated me to use my position and privilege to dismantle op-
pressive power structures. As someone who seeks to serve as a co-conspirator,‡ it is easy 
to overlook my privileges. I try to broaden my perspective through feedback from those 
with more diverse lived experiences than my own. 

The following is the second author’s positionality statement: Identifying as a White, 
cisgendered, heterosexual, able-bodied man provides me with opportunities denied to 
others in American society. These identities predominate other people’s initial percep-
tions of me and privilege me in science spaces. My experience growing up in a poor 
home and as a veteran of the all-male submarine service motivate me to reflect on and 
work to dismantle my privilege. The juxtaposition between who I am perceived as and 
how I perceive myself has motivated this work on building quantitative methods that 
respect and reflect students’ identities and societal power structures. Because I am not a 
woman or a person of color, I brought a limited perspective to this work on racism and 
sexism.

To broaden the paper’s perspective beyond those of the authors, we contracted 
McKensie Mack of Radical Copy to perform an equity audit of the manuscript. 

3. CONCEPTUAL FRAMEWORK

3.1 Critical Theory

Critical Race Theory (CRT) began in the 1970s and 1980s to address social injustices 
and racial oppression (Ladson-Billings, 2013; West, 1995; Sleeter and Bernal, 2004). 
Subsequently, scholars in many fields, including education (Ladson-Billings, 1998, 
2009), have used CRT to guide their work in areas such as LatCrit, FemCrit, AsianCrit, 
and WhiteCrit (Solorzano and Yosso, 2001). Each of these branches applies the defining 
characteristics of CRT (e.g., examining oppressive power structures, challenging the 
ideas of objectivity, and considering intersectionality of individual’s identities; Ladson-
Billings, 2013) in novel contexts. 

* �In this publication, we capitalize all races, including White, emphasizing that there is no default race and that they are 
all social constructs with associated sets of cultural practices.

†�We use the term “minoritized” to reflect that students are categorized as minority through an active social process, rather 
than a characteristic of the individual.

‡ �I define “co-conspirator” as someone who uses their privilege to take action against racism regardless of personal con-
sequences.
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The tenets of CRT are not explicitly qualitative, but CRT research has historically 
used qualitative methods. The predominance of qualitative methods in CRT investiga-
tions is, in part, due to CRT’s focus on individual’s narratives and counter-narratives 
(McGee, 2020). However, we will use a quantitative critical (QuantCrit) (Stage, 2007) 
perspective to inform our use of quantitative methods in ways consistent with the te-
nets of CRT. In this investigation, we forefront three tenets of QuantCrit proposed by 
Covarrubias et al. (2018) and Gillborn et al. (2018): (1) disrupting dominant quan-
titative methods, (2) data cannot “speak for itself,” and (3) taking an intersectional  
perspective. 

3.1.1 Disrupting Dominant Quantitative Methods

Quantitative research has a long history of perpetuating inequities (Zuberi and Bo-
nilla-Silva, 2008). The eugenics movement formed the foundation of many statistical 
methods in social sciences (Zuberi, 2001). The eugenics movement appropriated the 
scientific ideas of genetics and evolution to advocate for selective breeding to remove 
so-called inferior characteristics. These racist, classist, and ableist ideas used science to 
harm minoritized individuals and communities. U.S. states began enacting laws in 1907 
that legalized sterilizing the “feebleminded” (Reilly, 2015). This has led to the coercive 
sterilization of over 60,000 poor, unwed, Black, Indigenous, people of color, or mentally 
disabled people. Coercive sterilization is still legal and occurring in the U.S. today (Wil-
son, 2018), for example, in for-profit immigration detention centers (Jankowski, 2020). 
We also see the eugenics movement’s ideas in modern academia, which often excludes 
minoritized individuals’ contributions to science (McGee, 2020).

Quantitative social science research is rife with “hidden assumptions” and “ideolog-
ical inscriptions” (Stage, 2007, p. 9) that promote “color-blind” interpretations of data. 
Being “color-blind” is often presented as a virtue as it is seen as race-neutral (Bonilla-
Silva, 2006). Ignoring race, however, ignores a major component of individual’s identi-
ties and lived experiences and obscures inequities. In quantitative analyses, race-neutral 
models often minimize or replace race with proxies that appear as if race does not mat-
ter. For example, the Fair Housing Act of 1968 prohibited the practice of denying mort-
gages to Black people based on their skin color (i.e., redlining). Still, it did not end the 
denial of mortgages to Black people. Banks propagated the practice by using proxies for 
race, such as zip code and neighborhood median income. Some researchers have termed 
this practice algorithmic redlining (Allen, 2019). The racist history of race-neutral in-
terpretations of data in conjunction with quantitative researchers’ objectivity claims has 
mostly kept CRT researchers from implementing quantitative methods (Covarrubias et 
al., 2018). As QuantCrit researchers, it is incumbent upon us to disrupt oppressive sys-
tems by identifying the hidden assumptions in our work and using quantitative methods 
to create more just systems. 

Researchers often skip rigorous model specification in favor of replicating the mod-
els from prior investigations. Relying on models from previous research to accurately 
describe a new dataset creates opportunities to perpetuate hidden assumptions. For ex-
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ample, examining the impacts of racism on student outcomes with a limited sample size 
may necessitate that researchers aggregate students into only two groups. STEM educa-
tion researchers most often define these groups using the National Science Foundation’s 
definition of underrepresented minorities: students who are not White or Asian unless 
they are Hispanic. These aggregations get replicated in future studies with large samples 
with the statistical power to disaggregate the data. This leads to a body of literature that 
fails to address the variation in how racist power structures impact social identity (e.g., 
gender and race) groups and perpetuates the model minority myth that Asians do not 
experience racism (Lee, 2015). 

3.1.2 Data Cannot “Speak for Itself”

Assumptions that serve the dominant perspective can shape every stage of collecting, 
analyzing, and interpreting data (Covarrubias et al., 2018; Zuberi and Bonilla-Silva, 
2008). To properly contextualize findings, researchers must critically examine and 
communicate how assumptions have influenced their data collection and analysis. 
The practice of reporting data and letting it “speak for itself” encourages readers to 
assume that the findings are objective and that they should interpret them from the 
dominant perspective, which reinforces existing power structures. In investigations 
of equity in STEM student outcomes, this practice often leads readers to ignore bias 
in assessment instruments and administration practices and reinforces the preexist-
ing idea that the “achievement gap” describes inherent deficiencies in minoritized 
students. We strive to contextualize our findings and prevent them from supporting 
deficit views of students. Deficit views position differences across social identifier 
(e.g., gender and race) groups as arising from individuals’ deficiencies rather than 
because of the hegemonic power structures the individuals are embedded within. 
To prevent our findings from being used to support deficit perspectives, we discuss 
the limitations of our data, present our data and methods transparently, and discuss 
inequities in outcomes across social identifier groups as the products of racism and 
sexism. 

3.1.3 Taking an Intersectional Perspective

QuantCrit research assumes that differences in outcomes across social identifier groups 
result from intersecting oppressive power structures. Critical research uses intersection-
ality (Crenshaw, 1989, 1990) to account for oppressive power structures never operating 
independently (Bruning et al., 2015; Armstrong and Jovanovic, 2015). For example, 
Black women may not experience racism in the same ways as Black men nor sexism 
in the same ways as White women. An intersectional approach to modeling includes 
interaction terms between student social identifier variables (e.g., race and gender) to 
account for interactions across axes of oppression (Schudde, 2018; López et al., 2018). 
Ultimately, researchers may remove interaction terms if they are not predictive, but the 
model specification process must allow for intersectionality. 
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3.2 Operationalizing Equity

We operationalized equity (Rodriguez et al., 2012; Stage, 2007) as equality of learning. 
Equality of learning is achieved when students from different social identifier groups 
learn equivalent amounts. This perspective has been called “equity for equal potential” 
(Espinoza, 2007) and is related to “equity of fairness” (Lee, 1999; Rodriguez et al., 
2012). Equality of learning ensures that students who start the semester similarly pre-
pared attain the same level of achievement. We use equality of learning as it is a com-
monly used type of equity and aligns with Van Dusen and Nissen’s (2020) use of gain 
as the outcome variable. Still, it is a problematic form of equity because it ignores prior 
differences that represent the educational debts (Fig. 1) (Ladson-Billings, 2006) society 
owes to students from minoritized groups. Achieving equality of learning maintains 
society’s educational debts. Exceeding it begins to repay those debts and failing to meet 
it adds to those debts. We advocate for the use of multiple and stronger antiracist opera-
tionalizations of equity, such as equality of outcomes (sometimes called equity of parity; 
Rodriguez et al., 2012). Equality of outcomes is met when educational debts are fully 
repaid, and all groups have the same average outcomes regardless of prior educational 
debts. In this analysis, however, for brevity’s sake we only used one operationalization 
of equity, equality of learning, as it was the one modeled using gain as the outcome vari-
able by Van Dusen and Nissen (2020).

FIG. 1: A visual representation of society’s educational debts before and after instruction with 
three potential outcomes. The figure uses simulated data with the horizontal lines representing 
mean scores, dots representing individual students, and the violin plot envelopes representing the 
density of scores. The figure shows how educational debts can be mitigated (exceeding equal-
ity of learning), perpetuated (achieving equality of learning), or exacerbated (failing equality of 
learning). It also shows that in statistical models, educational debts are measures of average dif-
ferences between groups, not absolute differences between individuals.
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4. MODEL SPECIFICATION

From a QuantCrit perspective, the goals of model specification are to generate models 
that accurately represent broadscale student outcomes in ways that value their intersec-
tional identities. To accomplish these goals, DBER equity models should maximize two 
outcomes. (1) Accuracy — minimize bias in predicted outcomes and (2) precision — 
maximize model precision and accurately present uncertainties. In statistics, accuracy 
and precision are sometimes referred to as bias and variance. Figure 2 shows examples 
of high and low accuracy and how they relate to over- and underfitting.

Models must balance parsimony and fit (Fig. 3) (Wagenmakers and Farrell, 2004) to 
accurately and precisely represent phenomena (Johnson and Omland, 2004). Overly par-
simonious models are underfit and don’t include relevant predictor variables, may have 
biased coefficients, artificially small uncertainties, and seem overgeneralizable. Under-
parsimonious models are overfit and include nonexplanatory predictors, artificially large 
uncertainties, and limited generalizability (Cawley and Talbot, 2010; Zellner, 2001). 
Researchers can use large uncertainties for social identifier variables to claim courses 
have repaid educational debts because the model coefficients for the social identifier 
variables are no longer statistically significant (for example, see Rodriguez et al., 2012). 
Statistical power exacerbates the tension between parsimony and fit when developing 
intersectional models. Statistical power describes a significance test’s ability to identify 
a coefficient with a useful level of precision. The sample size, subsample sizes, and 
number of predictor variables influence a test’s statistical power. Intersectional models 
include interaction terms between variables that can double (e.g., interacting race and 
gender) or quadruple (e.g., interacting race, gender, and first-generation college status) 

FIG. 2: A visual representation of accuracy and precision on a dart board. Precision is repre-
sented by how close the darts are to each other and accuracy is represented by how close the darts 
are to the bullseye. Underfitting models leads to low accuracy, but high precision. Overfitting 
models leads to low precision but high accuracy.
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the number of predictor variables. Dividing the data into more groups decreases the 
subsample sizes. In our recent work, we have used 20 as a minimum subsample size 
for including variables in the model (e.g., at least 20 Hispanic first-generation women; 
Simmons et al., 2011). This subsample size cutoff minimizes the risk of presenting 
anomalous results with large uncertainties that could be taken out of context to harm 
minoritized groups. 

Large datasets are required to power tests with intersectional models. For example, 
in our review of 60 DBER studies, detailed below, six reported their sample sizes dis-
aggregated by gender and race. Black women made up 2% of those samples; a typical 
study needs to include 1000 students to include 20 Black women. But, only 43% of the 
reviewed studies had more than 1000 students. 

4.1 DBER’s Use of Specification Methods 

To characterize DBER methods of model specification, we reviewed six DBER journals. 
The journals cover the disciplines of biology (Cell Biology Education — Life Sciences 
Education), chemistry (Journal of Chemical Education), engineering (Journal of En-
gineering Education), math (Journal of Research in Mathematics Education), physics 
(Physical Review Physics Education Research), and STEM broadly (Journal of Women 
and Minorities in Science and Engineering). Using each journal’s search function, we 
searched for the terms “regression” and “equity.” We then identified the ten most recent 
publications that performed regression analyses of student outcomes. If these two search 
terms did not identify ten publications, we reran the search only using the term “regres-
sion.” Seventy-five percent of the articles examined equity, and the date of publications 
ranged from 1975 to 2020 with a median of 2016.5. 

5. EVALUATION OF SPECIFICATION METHODS

Each of the four model specification methods can lead to a different best model with 
unique findings and conclusions. We will examine how well the models from each method 
aligned with the two goals of model specification discussed in our conceptual framework: 

FIG. 3: Overfit models capture the noise along with the underlying patter, creating low-precision 
models. Underfit models fail to capture the underlying pattern, creating low-accuracy models. A 
model with good balance between precision and accuracy captures the underlying pattern in a 
generalizable manner.
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(1) accuracy — minimize bias in predicted outcomes across diverse student identities and 
(2) precision — accurately reflect the predictions’ uncertainty. These examinations look at 
the general theory for the method and its applications in DBER investigations of equity.

5.1 A Priori Model Specification

5.1.1 General Theory

The most common method for model creation in our literature review was a priori 
model specification (see Table 2). When a priori identifying a best model, researchers 
forgo any statistical procedure. This method relies on researchers accurately identifying 
strong predictors and eliminating poor predictors before running any models. Existing 
theory and literature can help inform this process (Shmueli, 2010). Even in areas where 
widely accepted models exist, their use without considering fit criteria has led to poorly 
specified models (Katsanevakis and Maravelias, 2008).

5.1.2 Application in DBER Investigations of Equity

Articles that we classified as using a priori model fit may have used another method 
but failed to report their process. These hidden decisions make it difficult to interpret 
the usefulness and validity of final models produced by studies that don’t explicitly 
state their model specification process. Those that did use a priori methods drew on 
prior research and theory to decide which variables to include and how to disaggregate 
social identifier data. DBER equity research, however, often lacks a theoretical frame-
work. Models frequently disaggregate data based on institutional directives, such as the 
National Science Foundation’s definition of underrepresented minorities, and ingrained 
historical oppression, such as institutional data or scantron sheets that treat gender as a 
binary (Traxler et al., 2016). Metcalf (2016) argues that these prefabricated variables 
prioritize statistical significance over meaningful exploration of inequities.

A priori model specification may produce overspecified or underspecified models. 
Overspecified models may include nonexplanatory or redundant predictor variables, 
which is problematic for the reasons discussed in Section 4, Model Specification. Un-
derspecified models may not disaggregate social identifier groups or account for inter-
sectionality across social identifier variables. Thus, it is difficult to evaluate if a priori 
specified models achieve either the first goal (accuracy) of minimizing bias or the sec-
ond goal (precision) of accurately reflecting model uncertainty. 

5.2 Statistical Significance Model Specification

5.2.1 General Theory

Researchers sometimes use statistical significance to identify and remove predictors that 
do not meet a p-value threshold (typically p < 0.05). Using a predictor variable’s p-value 
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addresses model parsimony by only including the largest coefficients relative to their 
uncertainty. Researchers implement statistical significance model specification either 
through an incremental (i.e., stepwise) or single-step process (Kadane and Lazar, 2004). 
Stepwise model specification adds and removes variables one at a time. The single-step 
procedure runs the a priori model and then removes all variables that were not statisti-
cally significant.

The American Statistical Association, however, has joined a growing group of or-
ganizations critiquing the use of statistical significance in the sciences (Amrhein et al., 
2019; Wasserstein et al., 2019; Wasserstein and Lazar, 2016), including its use in model 
specification (Raftery, 1995; Shmueli, 2010; Wang, 2019). Researchers calculate predic-
tor variable coefficient p-values from a combination of the coefficient’s estimated size 
(practical significance) and its standard error (uncertainty). This relationship between 
statistical significance and practical significance has led many to conflate the two (Was-
serstein and Lazar, 2016). Authors even incorrectly argue that coefficients with p > 0.05 
are “statistically zero” when their studies lack the precision to support such claims. 
The misunderstanding and misuse of p-values have led some journals (e.g., Basic and 
Applied Social Psychology) to ban its use in favor of more descriptive measures (e.g., 
confidence intervals) (Wang, 2019). 

5.2.2 Application in DBER Investigations of Equity

Specifying models using statistical significance poses particular problems for DBER 
investigations of equity. Sample sizes influence which variables achieve statistical sig-
nificance. Even highly predictive variables will not achieve statistical significance with-
out a large enough sample, and dichotomous social identifier variables require larger 
samples than continuous variables such as course grades and SAT scores (Astivia et 
al., 2019). The underrepresentation of minoritized groups in STEM courses and DBER 
datasets makes it unlikely that practically significant social identifier variables will be 
statistically significant. Lack of statistical significance for social identifier variables can 
lead researchers to incorrectly conclude courses or interventions achieved equality be-
tween groups. Many DBER equity investigations include predictors that account for 
differences in students’ prior preparation (e.g., pretest score, ACT score, or GPA). These 
continuous variables further decrease the likelihood of social identifier variables being 
statistically significant because both are proxies for the same constructs of oppression 
(e.g., racism, sexism, homophobia, and classism). In other words, regression models 
that include variables for prior preparation risk overlooking the educational debts so-
ciety owes minoritized students and risk concluding that unjust course outcomes are 
equitable. Statistical power limitations in DBER studies, which we discussed earlier, 
also mean that few studies will have large enough samples to build intersectional mod-
els. This can lead researchers to incorrectly conclude that interventions impact all so-
cial identifier groups the same. Because of its overly aggressive and biased removal of 
variables, using statistical significance for model specification is likely to identify an 
underspecified best model. 
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Statistical significance model specification leads to underspecified models that ex-
clude informative predictor variables. These models can fail the first goal (accuracy) 
of minimizing bias in predicted outcomes across diverse student identities by indicat-
ing that differences don’t exist when they do. The removal of informative predictor 
variables creates artificially small standard errors that misrepresent the certainty of the 
models leading them to fail to meet the second goal (precision) of accurately reflecting 
model uncertainty. For these reasons, we do not recommend using statistical signifi-
cance for model specification in DBER investigations of equity.

5.3 Variance Explained Model Specification

5.3.1 General Theory

“Variance explained” measures how much the inclusion of predictor variables reduces 
the variance as a fraction of the total variance and is represented by the R2 term; see 
Table 1 for further definitions. A model with no predictive ability would explain 0% of 
the variance. A model that perfectly predicts each datum would have 100% of the vari-
ance explained. While the typical variance explained by models varies by field, Cohen 
(1988) provides a rule of thumb in the social sciences that 2% is the recommended 
minimum, 13% is moderate, and 26% is a strong effect. Another option for calculating 
the variance explained is adjusted R2, which includes an adjustment for the number of 
variables. Researchers can also calculate the additional variance explained for each vari-
able, reflecting the amount the variance explained improved with the variable’s inclu-
sion. However, a shortcoming of additional variance explained is its dependency on the 
order that researchers include the variables in the model.

Researchers typically use variance explained for model specification in two ways: 
(1) maximizing variance explained or (2) using an additional variance explained cutoff. 
The first way identifies the model with the most variance explained as the best model 
(Johnson and Omland, 2004). This method maximizes model fit and ignores parsimony 
because even the inclusion of a variable unrelated to the outcome measure rarely de-
creases the variance explained. The lack of a mechanism for creating model parsimony 
usually leads to identifying the a priori model as the best model. The second method 
includes an additional variance explained cutoff for variables. In this method, variables 
are introduced one at a time (i.e., stepwise) and only kept if they explain additional 
variance above the cutoff value. These cutoffs vary by study. In the study that we reana-
lyzed, Van Dusen and Nissen (2020) required that each variable improve the combined 
level-1 and level-2 percentage variance explained by 1%. Unlike the first method, the 
cutoffs in this method support model parsimony. 

5.3.2 Application in DBER Investigations of Equity

Specifying models by maximizing variance explained using R2 typically leads to the 
same best model as a priori model specification and the same drawbacks as that method. 
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The second method for using variance explained in model specification (additional vari-
ance explained) and using adjusted R2 are functionally equivalent.

Specifying models using the second method of variance explained (additional vari-
ance explained) has two primary issues. First, the order that researchers add variables 
can impact their additional variance explained. For example, predictor variables for prior 
preparation and social identifiers will explain some of the same variance in an outcome 
shaped by systemic oppression. However, researchers and policymakers can focus on 
the prior preparation to ignore the oppression and inequalities the data reveal. Depend-
ing on the procedures and software used, whichever predictor variable is added to the 
model first will account for their shared variance, thereby boosting its additional vari-
ance explained and decreasing the additional variance explained for the variables added 
later. For example, if DBER investigations of equity add prior performance variables 
first, then they are less likely to include social identifier variables in the best model. This 
dependency on the order of variable addition allows researchers to influence the process 
and circumvent the purpose of model specification. 

The second issue is that the relationship between the variance explained by a vari-
able and the variables size is complex. Variance explained depends on complex inter-
actions between the sample sizes, coefficient sizes, and data distributions (Ferguson, 
2009). Imbalanced samples, such as for equity models with small subsamples from mi-
noritized groups, may require that social identifier predictor variables have large coef-
ficients representing extreme inequalities to meet cutoffs set by researchers. To mitigate 
these issues, researchers can create proportional samples from the larger dataset. This 
data manipulation, however, negatively impacts statistical power. 

Variance explained tends to underspecify models by not including informative pre-
dictor variables. These models fail the first goal (accuracy) of minimizing bias in out-
comes across diverse student identities by representing outcomes as homogenous. The 
lack of relevant predictor variables is also likely to create artificially small standard 
errors, leading them to fail to meet the second goal (precision) of accurately reflecting 
model uncertainty. For these reasons, we do not recommend using variance explained 
for model specification in DBER investigations of equity.

5.4 Information Criterion Model Specification

5.4.1 General Theory

Information criteria are grounded in information theory and take both model fit and par-
simony into account (Zucchini, 2000; Raftery, 1995). One of the more popular informa-
tion criteria is the Akaike information criterion (AIC) (Akaike, 1998; Wagenmakers and 
Farrell, 2004). AIC estimates the Kullback–Leibler information lost by approximating 
full reality with the fitted model to establish a goodness of fit (Johnson and Omland, 
2004). AIC accomplishes this by calculating the lack of fit with a penalty for additional 
predictors. AIC corrected (AICc), which we used, includes a correction term for small 
sample sizes. Other information criteria include Bayesian information criterion, Wata-
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nabe–Akaike information criterion, and leave-one-out cross-validation. Each informa-
tion criterion calculates model fit and parsimony in slightly different ways but identifies 
best models in similar ways. AIC puts a stronger emphasis on model fit than other infor-
mation criteria (e.g., Bayesian information criterion) by including a smaller penalty for 
additional predictors.

To identify a best model, researchers compare the information criterion for each 
proposed model. AIC values can be quite large. Nonetheless, differences in the single 
digits inform the quality of model fit. Burnham and Anderson (2002) advise that models 
within 2 points of the lowest AICc value have equally strong fits and models within 8 
AICc points are still worth considering. This gradient of support, rather than a single 
cutoff value, gives researchers some flexibility in identifying an empirically and con-
ceptually supported best model. The lack of dependence on the order that researchers 
add variables allows for the automation of model specification. For example, the dredge 
function (Barton and Barton, 2015) calculates information criterion for every possible 
combination of predictor variables in a model. 

5.4.2 Application in DBER Investigations of Equity

Because our conceptual framework forefronts intersectional models, we recommend 
using an information criterion with a smaller penalty for including additional variables 
(e.g., AICc). AICc runs the risk of overspecifying models, but alternate information 
criteria can be used to adjust the emphasis on model parsimony. Information criterion’s 
robust model specification methods allow it to handle the range of sample sizes and 
unbalanced samples common in DBER investigations of equity in ways that minimize 
model bias and uncertainty. 

Information criterion will identify models that include predictor variables that pro-
vide unique information. These models meet the first goal (accuracy) of minimizing bias 
in predicted outcomes across diverse student identities by including informative vari-
ables. These models’ inclusion of informative and exclusion of noninformative predictor 
variables leads them to meet the second goal (precision) of accurately reflecting model 
uncertainty. For these reasons, we recommend using information criterion for model 
specification in DBER investigations of equity.

5.5 Summary of Model Specification Methods

Based on the review of the literature, information criterion provides a method for model 
specification that aligns with QuantCrit because it allows for model parsimony without 
removing social identifier variables due to small sample sizes. A priori models do not al-
low for model parsimony. P-value and variance explained model specification both tend 
to remove predictor variables for social identifier groups with small sample sizes. This 
bias against small samples can undermine research seeking to understand the effects of 
intersecting axes of oppression, which require disaggregating the data across multiple 
underrepresented social identity groups.
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6. WORKED EXAMPLE

In our worked example, we reanalyze data from Van Dusen and Nissen (2020) using the 
four model specification methods and comparing the findings from each. The purpose 
of this worked example is to illustrate the ways that each method can impact model 
specification, the findings that come from them, and the implications for equity. In this 
example, we compare the other models against the information criterion model as the 
methods used to create it are best supported by the literature and our QuantCrit perspec-
tive.

As we followed the original publication’s procedures for data collection and pro-
cessing, handling missing data, and creating descriptive statistics, those subsections are 
truncated versions of the original article. While we agree with most of the methods used 
in that study, our ongoing use of QuantCrit has led us to identify several areas where we 
would handle gender and race data differently than we did in our 2020 article, which 
we discuss in Section 6.2.4, Reflections on Handling Social Identifier Data. To maintain 
fidelity to the study, however, we follow the methods used in the original investigation. 

6.1 Protection of Vulnerable Populations

We analyzed an existing dataset from the Learning About STEM Student Outcomes 
(LASSO) database under California State University Chico IRB protocol #5582. LASSO 
is a low-stakes online assessment platform that is free for instructors to use. The data 
only included students who consented to share their de-identified data with researchers. 
LASSO removed all student, course, instructor, and institution identifiers from the data 
we analyzed. To further ensure vulnerable populations’ safety, McKensie Mack of Radi-
cal Copy performed an equity audit of the manuscript.

6.2 Methods

6.2.1 Data Collection and Processing

Data came from the Learning About STEM Student Outcomes (LASSO) platform’s 
anonymized research database (Van Dusen, 2018). Instructors used the LASSO plat-
form to administer and score the research-based assessments (RBAs) online. The RBAs 
were the Force Concept Inventory (FCI) (Hestenes and Swackhamer, 1992) and the 
Force and Motion Conceptual Evaluation (FMCE) (Thornton and Sokoloff, 1998). The 
FCI and FMCE use multiple choice questions to assess core concepts around forces 
and motion in first-semester physics courses. Both have absolute gains from pretest 
to posttest between 10% and 30% (Rodriguez et al., 2012). The data included 15,267 
students in 201 courses from 31 institutions. The dataset had students’ self-identified 
gender, race, ethnicity, and if they were retaking the course; student pretest score, post-
test score, time spent taking the assessment; and whether the course used collaborative 
learning.
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We cleaned the data by removing students if they were missing data for their 
gender or retaking the course. We then removed individual tests if the student took 
less than 5 minutes on the assessment or completed less than 80% of the questions. 
If a student had neither a pretest nor a posttest score after these filters, we removed 
their data. We removed courses with less than 40% student participation on either the 
pretest or posttest from the data and courses with fewer than either eight pretests or 
eight posttests. After filtering, 58% of the students had matched pretest and posttest 
scores, which fell in the range of typical participation rates in the literature (Nissen 
et al., 2018).

After cleaning the data, we performed hierarchical multiple imputations (HMI) with 
the hmi (Speidel et al., 2018) and mice (van Buuren and Groothuis-Oudshoorn, 2011) 
packages in R-Studio V. 1.1.456 to address missing data. The multiply imputed dataset 
used in this study was the same one used in the earlier study.

We analyzed the data using hierarchical linear models (HLM). All models were two-
level hierarchical linear models that nested students within classes. Each of the models 
used fixed slopes and random intercepts. The models were regressed using the maxi-
mum likelihood estimates in the lme4 package (Bates, 2010; Bates, et al., 2007) in R. 

6.2.2 Gender, Race, and Ethnicity

We used students’ self-reported social identifier data collected through the LASSO plat-
form to categorize their gender, race, and ethnicity. We entered each social identifier 
variable into the model using a placeholder (0/1) variable. This section will first discuss 
how we handled the social identifier data in the prior study and this study. We will then 
discuss how we have modified these practices in later investigations. 

6.2.3 Social Identifiers in This and the Prior Study

As discussed earlier, we removed students from the dataset who did not reply to the 
gender question. We aggregated the students who selected transgender, other, or typed 
in a gender with women. Aggregating the data in this way reduced students’ gender data 
to either men or women.

Race and ethnicity categories included Black, Hispanic, Asian, Hawaiian or Pacific 
Islander (Pac. Islander), other, or White based on student responses to the social identi-
fiers questionnaire. The other category included students who selected other, Alaskan 
Native or American Indian, or did not respond. We included the Alaskan Native and 
American Indian students in the other category because of sample size (N = 61). We 
identified students with multiple racial identities by the identity with the smallest sample 
size to make the race/ethnicity categories independent of one another to simplify the 
model and preserve statistical power. For example, a student who identified as both 
Black and Hispanic was included as a Black student because that was the smaller sample 
size. Except for Hispanic students, the number of students of multiple races/ethnicities 
was small.
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6.2.4 Reflections on Handling Social Identifier Data

Van Dusen and Nissen’s (2020) decisions preserved statistical power for using vari-
ance explained for model selection. In later work (e.g., Nissen et al., 2021; Van Du-
sen et al., 2021), we focused on respecting students’ identities first and following 
statistical guidance for minimum group sizes second. We used a minimum group size 
of 20 (Simmons et al., 2011) to include social identifier variables or interactions to 
minimize the chance of spurious results. For gender, we included variables for man, 
woman, transgender, and nonbinary if the number of students who identified with that 
group reached 20. For each student, we included all identities that met this threshold. 
For example, if the data included ten transgender men and ten transgender women, 
we would include a variable for transgender. Still, we would not include an interac-
tion term (i.e., transgender*woman) until the number of transgender men and women 
was each 20 or more. For groups with less than 20, we aggregate their data into the 
variable other gender. Aggregating groups with small sample sizes allowed us to keep 
them in our analyses, which accurately represented the courses they were in while 
also acknowledging that quantitative measures cannot provide accurate and precise 
information about small groups.

We have also made several changes in how we model race. Similarly to how we 
included gender in the model, we used a minimum size of 20 to include a variable or in-
teraction in the model. For groups with less than 20 members in the dataset, we included 
their data in the other race category for the same reason stated for gender. We stopped 
restricting each student to one racial identity. When the number of students with two 
identities reached or exceeded 20, we included an interaction term in the a priori model, 
e.g., White Hispanic students.

The capabilities and limitations of quantitative models put them in tension with 
critical theory’s tenet of intersectionality. Methodological choices can both cause 
and mitigate harm with no clear guidance to fully address this tension. However, 
this tension motivates us to refine and better align our methods with the tenets of 
critical theory and those tenets provide guidance for making decisions when facing 
uncertainty. 

6.2.5 Descriptive Statistics

The data set included 187 courses: 153 courses used collaborative instruction, had 
11,740 students, and mean gains of 20.9%, and 34 courses used lecture-based instruc-
tion, had 2117 students and mean gains of 15.7%. Forty-eight of the courses used the 
FMCE. One-hundred thirty-nine of the courses used the FCI. We calculated descrip-
tive statistics for the dataset to characterize differences between the mean pretest 
scores, posttest scores, and gains across student social identifiers (Table 3). The final 
sample included students and courses from 31 institutions: 20 granted doctorates, six 
granted master’s degrees, three granted bachelor’s degrees, and two granted associate 
degrees. 
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6.2.6 Model Development

To develop our gain (posttest – pretest) models, we began by creating a model with 
no predictor variables (i.e., an unconditional model) and then used a forward stepwise 
process to add or remove predictor variables incrementally. We created 11 total models. 
Table 4 shows the full list of variables. To ease interpretation, we group mean-centered 
(i.e., centered on the mean prescore in the course) the student prescore variable, grand 
mean-centered (i.e., centered on the mean across all courses) the class mean prescore, 
and left the rest of the variables uncentered.

TABLE 3: Descriptive statistics for the sample, disaggregated by race and gender*
Race/ethnicity Instruction Gender N Gain

Mean SD
Asian Collab. Men 811 19.2 20.6

Women 611 18.6 19.8
Lecture Men 96 20.1 21

Women 75 14.9 17.7
Black Collab. Men 169 16.2 19.1

Women 180 17.8 19.9
Lecture Men 28 20.3 16.9

Women 36 16.4 15
Hispanic Collab. Men 1192 19.1 19.3

Women 568 17.4 19
Lecture Men 204 13.9 18.7

Women 1982 10.8 14.7
Pacific Islander Collab. Men 69 19.8 17.9

Women 42 23.3 19.5
Lecture Men 5 18.1 28.1

Women 10 13.5 12
Other Collab. Men 497 18.1 19.2

Women 357 19.1 19.7
Lecture Men 92 14.4 21.4

Women 95 11.1 13.8
White Collab. Men 4791 22.1 19.2

Women 2429 22.9 19.5
Lecture Men 593 16.7 18.9

Women 685 16.8 18.2
*�Other races and genders are included in the dataset and model, but their sample sizes were not large enough 
to ethically include them in this table.
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6.2.7 Model Selection

Each model specification method identified a different best model. Using the statistical 
significance procedure, we identified the model with all statistically significant coeffi-
cients as the best model. To specify the model using variance explained, we calculated 
the percentage of the level-1 and level-2 variance explained by each model. We then 
examined whether the percentage of level-1 variance explained plus the percentage of 
level-2 variance explained improved by at least 1%. If so, we deemed the new model 
better than the preceding model. This process continued until new variables failed to 
improve the combined variable explained by at least 1%. To use the information criteria, 
we calculated the AICc score for each model. We then identified the model with the 
lowest AICc score and calculated the difference in AICc scores between that model and 
every other model. The a priori model included all of the variables considered in Van 
Dusen and Nissen (2020). 

6.3 Findings

We began the model development process by adding the student background variables 
to isolate their effects before adding our variables of interest (i.e., social identifiers and 
course type; see Table 5). Model 1 was the unconditional model, which predicted gains 
without using any predictor variables. Model 2 added a predictor variable for student 
pretest scores. Model 3 added a predictor variable for the course’s mean pretest score. As 
none of the selection criteria indicated that the class mean prescore was a useful predic-
tor, we dropped Model 3. We built Model 4 off Model 2 by adding a variable for whether 
a student was retaking the course. Model 5 added a predictor variable for whether the 
course was taught using collaborative learning activities. Model 6 added a variable for 
gender. Model 7 added five variables for race (Asian, Black, Hispanic, Hawaiian or 
Pacific Islander, and other). We built Model 8 specifically for the statistical significance 

TABLE 4: Predictor variables examined, their level, and whether they were centered
Variable Level Centering
Student prescore Student Group mean-centered
Class mean prescore Course Grand mean-centered
Retake Course None
Collaborative Course None
Woman Student None
Asian Student None
Black Student None
Hispanic Student None
Race_other Student None
Pacific Islander Student None
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criteria by removing the non-statistically-significant predictor (collaborative) from 
Model 7. Model 9 built off of Model 7 by adding the interaction between gender and 
race. Model 10 added interaction terms for collaborative, gender, and race. Model 11 
included all the variables that were a priori identified as being potentially informative.

Table 6 shows the variables used in each of the best models with their coefficients, 
p-values, and standard error. The table also shows the variance at both level 1 and level 
2 and the AICc scores. 

In the remainder of the Findings section, we examined what each of the four best 
models predicted about student outcomes and what conclusions about classroom ineq-
uities they supported. To focus the findings on how the model specification impacted 
conclusions about equity, we’ve only plotted outcomes for the four most populous racial 
groups in our data (Black, Hispanic, Asian, and White). The small number of students 
who identified as Hawaiian or Pacific Islander in lecture-based courses meant that some 
of the models had large uncertainty about the outcomes for that group of students. 

TABLE 5: A table of the model specification process with values for delta R2 and delta AICc, 
whether all variables were p < 0.05, and which model was identified as best by each model speci-
fication procedure. We use bold to indicate the combined percentage variance explained changes 
that showed improvement in each model. The Delta AICc scores are referenced against the model 
with the lowest AICc score (Model 10)
Model Coefficients p-Value 

criteria
Delta R2 Delta AICc Best model

1 Intercept Met 0.00% 1544.1 —
2 Int. + Pre_student Met 7.74% 237.2 —
3 Int. + Pre_s. + Pre_class — –0.49% 242.8 —
4 Int. + Pre_s. + retake Met 4.22% 201.8 —
5 Int. + Pre_s. + retake + 

collaborative
— 2.06% 197 —

6 Int. + Pre_s. + retake + 
collaborative + gender

— 1.02% 167.5 —

7 Int. + Pre_s. + retake + 
collaborative + gender + race

— 2.79% 41.4 R2

8 Int. + Pre_s. + retake + gender 
+ race

Met –1.59% 46.2 p-value

9 Int. + Pre_s. + retake + 
collaborative + gender*race

— –0.14% 27.6 —

10 Int. + Pre_s. + retake + 
collaborative*gender*race

— –0.26% min AICc

11 Int. + Pre_s. + retake + 
collaborative*race*gender + 

pre_class

— –0.14% 4.7 a priori
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To compare findings across model specification methods (Fig. 4), we discussed 
each model’s findings in five areas: (1) collaborative learning, (2) sexism, (3) rac-
ism, (4) intersectionality (i.e., gender*race), (5) equity and collaborative learning (i.e., 
collaborative*social identifiers), and (6) shortcomings. Our discussion of the four mod-
els is informed by our conceptual framework (e.g., we identify racism and sexism as 
the causes of inequitable outcomes). We discussed the models in order of least to most 
complex. Additional examination of the model shortcomings and implications for their 
use are included in the Discussion section.

FIG. 4: Predicted gains across social identifier groups for the four best models: (a) statistical 
significance, model 7; (b) variance explained, model 8; (c) information criterion, model 10; and 
(d) a priori, model 11. Error bars represent ± 1 standard error.

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

JWM-36220.indd               50                                           Manila Typesetting Company                                           05/23/2022          07:54PM



Volume 28, Issue 3, 2022

Inequities in STEM Student Outcomes � 51

6.3.1 Statistical Significance Best Model

The statistical significance model selection criteria identified Model 8 as the best model. 
Model 8 included social identifier variables for gender and race but no interaction effects 
or collaborative instruction variables. Model 8 indicated the following:

1.	Collaborative learning — Conceptual learning in courses with collaborative 
learning and lecture-based instruction were identical.

2.	Sexism — The gender variable indicated that sexism negatively impacted all 
women’s learning gains by 1.9 percentage points, an 11% lower learning gain 
than would occur in an equitable course.

3.	Racism — Racism negatively impacted Asian, Black, and Hispanic students; rac-
ism’s negative impacts were largest for Black students and the smallest for Asian 
students.

4.	Intersectionality — There were no intersectional effects. The impacts of racism 
were constant across genders, and sexism’s impacts were consistent across racial 
groups. 

5.	Equity and collaborative learning — Collaborative learning was not associated 
with any shifts in equality of learning.

6.	 Shortcomings — The model’s lack of a term for collaborative learning makes it 
impossible to identify whether collaborative learning is associated with improved 
average student learning gains. The model’s lack of interaction terms between collab-
orative learning and social identifier variables makes it impossible to identify whether 
collaborative learning is associated with increased or decreased equality of learning. 
The model’s lack of interaction terms between gender and race variables makes it 
impossible to identify any intersectional effects. The general lack of interaction terms 
in the model also produced artificially small error bars for groups that were not well 
represented in the dataset (e.g., Black women and men in lecture-based courses). 

6.3.2 Variance Explained Best Model

The variance explained model selection criteria identified Model 7 as the best model. 
Model 7 was the same as Model 8 with one exception; it included a variable for collab-
orative learning. Model 7 indicated the following: 

1.	Collaborative learning — Students learned 3.1 percentage points more, a 23% 
increase in learning gains, in collaborative-based courses.

2.	Sexism — Sexism negatively impacted women’s learning gains by 1.9 percent-
age points, a 12% lower learning gain than men.

3.	Racism — Racism negatively impacted Asian, Black, and Hispanic students; rac-
ism’s negative impacts were largest for Black students and the smallest for Asian 
students.

4.	Intersectionality — There were no intersectional effects. The impacts of racism 
were constant across the genders, and sexism’s impacts were consistent across 
racial groups. 
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5.	Equity and collaborative learning — Equality of learning did not broadly occur 
in courses that used collaborative learning. 

6.	Shortcomings — The model’s lack of interaction terms between collaborative 
learning and social identifier variables makes it impossible to identify whether 
collaborative learning is associated with increased or decreased equality of learn-
ing. The model’s lack of interaction terms between gender and race variables 
makes it impossible to identify any intersectional effects. The general lack of in-
teraction terms in the model also produced artificially small error bars for groups 
that were not well represented in the dataset (e.g., Black women and men in 
lecture-based courses). 

6.3.3 Information Criterion Best Model

The information criterion identified Model 10 as the best model. Model 10 included 
interactions between gender, race, and collaborative learning. Model 10 indicated the 
following:

1.	Collaborative learning — Overall, students learned more in collaborative-based 
courses, but this instructional strategy’s advantages were not certain for all stu-
dents. Students learned at least 2.6 percentage points more, a 17% or more in-
crease in learning gains, in collaborative-based courses for all social identifier 
groups other than Black men, Black women, and Hispanic Women. For Black 
students, uncertainty in the learning gains in lecture-based courses made com-
parisons problematic. For Hispanic women, the difference was only 1.5% and 
was well within the model uncertainty.

2.	Sexism — Sexism negatively impacted White and Hispanic women’s learning 
gains by more than 1.3 percentage points in lecture-based courses and more 
than 2.3 percentage points in collaborative-based courses. Sexism likely harmed 
Asian women’s gains, but more evidence was needed to support strong claims 
about this harm due to the model’s uncertainty. Black men and women had simi-
lar learning gains in collaborative courses. The model’s uncertainty means that it 
did not rule out sexism harming Black women’s learning gains, but the model did 
indicate those harms at worst would have been similar to the effects of sexism 
on Asian, Hispanic, and White women. The uncertainty was too large for Black 
students in lecture-based courses to make claims about the impacts of sexism on 
Black women in that course type. The negative impact of sexism in collaborative 
courses had less uncertainty than in traditional courses due to the prevalence of 
collaborative courses in the data.

3.	Racism — Racism negatively impacted Asian, Black, and Hispanic students to 
varying amounts. In lecture-based courses, Asian, Black, and Hispanic students 
had similar negative impacts from racism on their gains (~ 3.4 percentage points). 
In collaborative courses, the adverse effects of racism on gains were largest for 
Black students (6.3 percentage points) and smallest for Asian students (1.7 per-
centage points).
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4.	Intersectionality — The model indicated that the intersectional effects of racism 
and sexism were less than the additive effects of both for each racial and gender 
group. The mediational effect of sexism on racism in this context could be seen in 
the smaller spread of scores due to racism for women than men in both traditional 
(3.9% vs. 6.2%) and collaborative learning courses (5.1% vs. 7.6%). 

5.	Equity and collaborative learning — The impact of collaborative learning varied 
by social identifier group, but there was no overall evidence of improvement in 
equality of learning.

6.	Shortcomings — The larger error bars in comparison to the prior models stand 
out as a drawback to this model because it makes it more difficult to identify 
robust differences. The larger error bars, however, more accurately represent the 
models’ certainty about findings given the variation across sub–group sample 
sizes. For example, Models 7 and 8 in Fig. 4 give similar uncertainties for Black 
students in both collaborative and lecture-based instruction though the much 
smaller number of students in lecture-based courses, approximately one-fifth, in-
dicates much greater uncertainty about outcomes for Black women and men in 
lecture-based courses than in collaborative courses. The error bars in Model 10 
provide us a guideline for how confidently the model can support different claims 
based on the sample sizes.

6.3.4 A Priori Best Model

The a priori model selection identified Model 11 as the best model. Model 11 was the 
same as Model 10 with one exception; it included a variable for the class’s mean pre-
test score. The differences between Model 10 and Model 11’s predicted outcomes were 
small for both the predicted gains (< 0.25 percentage points) and standard errors (< 0.04 
percentage points). We did not list out the findings for the first five areas for the a priori 
best model for brevity’s sake as they would be identical to those of the information 
criterion’s best model. The shortcomings of this model specification process were not 
apparent in our example. Specifically, including additional variables can lead to larger 
error bars but it did not occur in this case.

7. DISCUSSION

Our worked example had a sample size (15,267 students) ~ 18 times larger than the 
median sample size from our literature review of DBER investigations of equity (833 
students), and only six studies we reviewed reported larger samples. Our worked ex-
ample found the best models identified by statistical significance (Model 8) and vari-
ance explained (Model 7) both performed as predicted, leaving out relevant predictor 
variables and creating underspecified models. These models failed to meet the accuracy 
and precision goals we identified for DBER investigations of equity. We can find evi-
dence for their failure to meet the accuracy goal (minimizing bias in predicted outcomes 
across diverse student identities) in the disconnect between the descriptive statistics and 
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the model predictions. For example, the descriptive statistics found White men to have 
gains of 16.7% in lecture-based courses, while the statistical significance model pre-
dicted their gains at 19.7%. This contrasts with the information criterion model which 
predicted their gains to be 16.9%. Evidence for their failure to meet the precision goal 
(accurately reflecting model uncertainty) can be found in the disconnect between sample 
distribution and the standard errors. As standard error is inversely proportional to the 
sample size’s square root, the standard error should be larger for social identifier groups 
with smaller sample sizes. However, in these models, White men’s standard error is 
nearly identical to that of Black women, despite having ~ 25 times more White men in 
the sample (5384 vs. 216). 

The worked example also illustrated the unreasonableness of using p-values as a 
rigid go/no-go test. The variable for collaborative learning had a p-value of 0.054 in 
Model 7, leading to its removal in the statistical significance best model (Model 8). The 
variance explained best model (Model 7), however, showed that collaborative learning 
was associated with a meaningful average increase of 3.1 percentage points in student 
gains (an average 23% increase in gains). While it is common for statistical significance 
to be used in such ways, any strict rules for model specification that do not take a more 
holistic approach run the risk of hiding meaningful relationships and differences.

In this example, the a priori best model (Model 11) and information criterion best 
model (Model 10) were nearly identical. As it happened, almost all of the variables iden-
tified a priori as being potentially relevant were, leading to little differentiation between 
these two models. Both were intersectional and met the modeling goals we identified for 
DBER investigations of equity. The fact that both models led to such similar results is no 
surprise given that Model 11’s AICc score was only 4.7 points higher than Model 10ʼs, 
identifying it as a reasonable model to use. The lack of predictor variables such as test 
scores, course grades, and college or high school GPA, among others, limits this study’s 
ability to differentiate between the information criterion and a priori model selection 
processes. While both of these methods led to similar findings in this case, the a priori 
method acted as we predicted and identified a variable as relevant that none of the other 
methods identified as relevant. Not all investigations will have a substantial similarity 
between the a priori and information criterion best models. A priori identifying the best 
model runs the risk of creating overspecified models with misleading conclusions and 
overlarge error terms.

8. CONCLUSIONS

Critical theory tells us that presenting statistical analyses and their findings as objective 
and fact-based obscures the biases that data collection and analyses methods introduce. 
These hidden biases are particularly damaging in quantitative investigations of class-
room equity because the practices are rooted in a tradition of hegemonic oppression 
(Zuberi and Bonilla-Silva, 2008). We performed this investigation of model specifica-
tion methods to support future DBER investigations of equity in acknowledging and 
mitigating these biases. Our QuantCrit perspective led us to combine statistics emphasis 

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

JWM-36220.indd               54                                           Manila Typesetting Company                                           05/23/2022          07:54PM



Volume 28, Issue 3, 2022

Inequities in STEM Student Outcomes � 55

on model fit and parsimony with critical theory’s emphasis on intersectionality to cre-
ate two goals for model specification in DBER investigations of equity: (1) accuracy 
— minimize bias in outcomes across diverse student identities and (2) precision — ac-
curately reflect the prediction’s uncertainty.

Our examination of DBER’s four standard model specification methods led us to 
conclude that a priori best models’ lack of parsimony criteria is likely to create over-
specified models, unnecessarily increasing model uncertainty and failing the model 
precision goal. Model specification using statistical significance or variance explained 
can overemphasize model parsimony and create underspecified models that eliminate 
intersectionality from the model and fail both the model accuracy and precision goals. 
Information criterion strikes a balance between model fit and parsimony, allowing mod-
els to be intersectional while minimizing model uncertainty, thereby meeting the model 
accuracy and precision goals. We conclude that using information criterion provides the 
best method for specifying models in DBER investigations of equity. While exploring 
the different information criteria was beyond the scope of this research, we recommend 
using AICc as the information criterion metric. AICc is commonly used and puts less 
emphasis on parsimony than most other information criteria making them more likely to 
include intersectional effects in their best models.

Our worked example demonstrated the potential impact of model specification 
methods by reanalyzing the data from one of our prior DBER investigations of equity 
(Van Dusen and Nissen, 2020) using each of the four model specification methods. Each 
of the model specification methods we did not recommend using created mis-specified 
models, as our statistical analysis predicted they would. In this example, using statisti-
cal significance or variance explained to specify the model led to the identification of 
best models with biased results. The differences in the findings and the conclusions they 
support can have real-world consequences. For example, an administrator looking at the 
findings from the model specified using p-values (Model 8) would reasonably conclude 
not to allocate funds to support collaborative learning as it is not associated with im-
proved student learning. 

Education researchers should always reflect on their methods and how those meth-
ods influence findings. Critical examination of methods is especially warranted in inves-
tigations of equity where misleading findings can obscure and perpetuate harm caused 
by racism and sexism. In this investigation, we use a QuantCrit perspective to investi-
gate the methods used in model specification. Based on our analysis, we recommend 
that DBER investigations of equity use information criterion to create intersectional 
models that minimize bias, and both minimize and accurately represent model uncer-
tainty. Model specification, however, is only one step in a chain of quantitative methods 
that lead to findings. Each of these steps deserves similar scrutiny to that presented in 
this article. However, this is difficult for individual researchers interested in engaging 
in DBER investigations of equity when the field itself has not substantively examined 
many of these issues. Future investigations should examine how DBER investigations 
of equity are biased by statistical power, interpretations of model uncertainty, data filter-
ing practices, handling of missing data, measures of equity, and data visualizations.
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