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Physics education researchers (PER) often analyze student data with single-level regression models (e.g.,
linear and logistic regression). However, education datasets can have hierarchical structures, such as
students nested within courses, that single-level models fail to account for. The improper use of single-level
models to analyze hierarchical datasets can lead to biased findings. Hierarchical models (also known as
multilevel models) account for this hierarchical nested structure in the data. In this publication, we outline
the theoretical differences between how single-level and multilevel models handle hierarchical datasets.
We then present analysis of a dataset from 112 introductory physics courses using both multiple linear
regression and hierarchical linear modeling to illustrate the potential impact of using an inappropriate
analytical method on PER findings and implications. Research can leverage multi-institutional datasets to
improve the field’s understanding of how to support student success in physics. There is no post hoc fix,
however, if researchers use inappropriate single-level models to analyze multilevel datasets. To continue
developing reliable and generalizable knowledge, PER should use hierarchical models when analyzing
hierarchical datasets. The Supplemental Material includes a sample dataset, R code to model the building
and analysis presented in the paper, and an HTML output from the R code.
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I. INTRODUCTION

Early work in physics education research (PER) focused
on student conceptual change and it remains a popular
area of study [1]. To measure conceptual change, physics
education researchers often analyze students’ pretest and
post-test scores on research-based assessments (RBAs) [2],
such as the Force Concept Inventory (FCI) [3]. To identify
the impact of a course transformation, physics education
researchers commonly compare student data collected
across course contexts (e.g., traditional and transformed
courses). Including data from multiple contexts also has
the benefit of improving a study’s statistical power and the
generalizability of its findings. Many of the most cited
publications in the PER literature rely on data collected
from multiple courses and institutions [4–7]. Data from
multiple contexts introduces a hierarchical structure into
the data where student data (level 1) nests within course
data (level 2). This nesting can include additional levels,
such as departments (level 3) and institutions (level 4).
When included in a multilevel regression model, the

structure of a hierarchical dataset can provide additional
information. The assumption of independence, which is
central to many statistical analyses [e.g., multiple linear
regression (MLR) and analysis of variance (ANOVA)], is
violated by connections between data points within a
hierarchical dataset. The violation of the assumption of
independence can bias the results from statistical models
[8,9]. The assumption of independence requires that there
are no student groupings that are not accounted for in a
model. Hierarchical models account for the nested nature of
the data and do not require the assumption of independence
to be met for the results to be reliable.
Many disciplines generate hierarchical datasets. While

researchers in each discipline use similar hierarchical models
to analyze their data, they refer to the models by different
names. For example, hierarchical models are referred to
as multilevel linear models in sociology, mixed-effects
models and random-effects models in biometrics, random-
coefficient regression models in econometrics, and covari-
ance components models in the statistical literature [10].
In this publication, we will use hierarchical linear models
(HLM) because it is the nomenclature education researchers
commonly used for hierarchical models.
The purpose of this article is to assist researchers in

identifying and applying the regression analysis techniques
best suited to their data and research questions. We will
accomplish this purpose in three sections: (i) Motivation—
we review PER’s historical use of regression analyses,

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 15, 020108 (2019)

2469-9896=19=15(2)=020108(13) 020108-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.15.020108&domain=pdf&date_stamp=2019-07-03
https://doi.org/10.1103/PhysRevPhysEducRes.15.020108
https://doi.org/10.1103/PhysRevPhysEducRes.15.020108
https://doi.org/10.1103/PhysRevPhysEducRes.15.020108
https://doi.org/10.1103/PhysRevPhysEducRes.15.020108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(ii) theory—we discuss the theoretical advantages and
disadvantages of three common techniques for dealing
with hierarchical data, and (iii) application—we examine
the practical implications of using MLR vs HLM.

II. MOTIVATION

Physics education researchers commonly use regression
models to investigate a wide range of phenomena including
conceptual learning, attitude development, drop, fail, and
withdrawal rates, and likelihoods of passing a class. These
models isolate the impact of a variable of interest while
controlling for other variables. For example, to investigate
the impact of research-based teaching practices on women,
a researcher might create a linear regression model of
post-test scores that controls for student pretest scores and
gender. To determine the different regression models com-
monly used in PER, we reviewed publications in Physical
Review Physics Education Research. We performed our
literature search on 3/27/18 using the “All Field” search tool
on the Physical Review PER website [11]. Our search of
the PER literature included both the Physical Review PER
and Physical Review Special Topics PER archives. We did
not include PER Conference proceedings or the American
Journal of Physics since their search functions did not
support our query. We searched for the terms “linear
regression,” “hierarchical linear model,” “multi-level
model,” and “multilevel model.” We performed an identical
search of the broader education literature using the Sage
Journal’s “anywhere” search tool of the journals they classify
as being “education.” Examples of Sage’s education journals
include Educational Researcher and American Education
Research Journal.
A single-level linear regression called multiple linear

regression (MLR) was the most commonly used type of
regression model. 43 publications in Physical Review PER
and 432 publications in Sage education journals mentioned
linear regression. It was not surprising that there were
more publications that mentioned linear regression in
Sage education journals given that they included multiple
journals. Our search for hierarchical linear model and its
synonyms in Physical Review PER returned only 2
publications and in Sage education journals returned 196
publications. While Sage journals had ∼10× as many
publications that mentioned linear regression they had
∼100× as many publications that mentioned hierarchical
linear model and its synonyms. Of the two publications in
Physical Review PER that mentioned hierarchical linear
model, the first mentioned HLM as a possible method of
analysis but did not use it [12]. The second publication
stated that they performed both HLM and linear regression,
but because they had similar results they only included the
linear regression results in the publication [13]. Indepen-
dent of our literature search, we identified two Physical
Review PER articles [14,15] that used HLM but did not
show up in our search because they referred to HLM using

the less common nomenclature of hierarchical-model
analysis and hierarchical linear regression. The more
common use of HLM in Sage education journals likely
results from education researchers starting to use HLM
thirty years ago [16] and its increased use as access to
computing power and larger datasets improved.
Despite not using HLM, physics education researchers

have often analyzed hierarchical datasets [4,6,17–19].
We propose that the PER community seldom used HLM
due to a lack of knowledge about both HLM and the
potential for traditional methods to bias findings. While
resources existed for applying HLM in different disciplines
[8,20,21], none existed in PER. In Secs. III and IV,
we address this limitation by outlining the theoretical
differences between MLR and HLM and then applying
both methods to a hierarchical dataset from 112 physics
courses to illustrate the impact that the selection of an
inappropriate modeling technique can have on findings.

III. THEORY

A. Sampling

Most sampling designs assume independence between
each measurement. That is, each student is independent
from the others, and all students have an equal chance of
being selected. Data collected from a single course is more
likely to meet the assumption of independence since it
limits the contexts and opportunities for the data to be
hierarchical. Data can still be hierarchical within a single
course, however, if the data nests within individuals or
groups of students. For example, in a course with three unit
exams and a final, the four exam scores are nested within
each student and create a hierarchical dataset. When
analyzing hierarchical datasets, however, researchers often
fail to consider if their data meet the assumption of
independence and simple proceed as if it does. While
erroneously making this assumption will not always lead to
biased results, it calls into question the validity of the
claims they can support [8,9,22].
Even if researchers collect an abundance of pertinent

data about the courses they study, those courses include
features that cannot be explicitly accounted for. For
example, a researcher may know which introductory
physics courses in their dataset were algebra and calculus
based, if it was the fall or spring semester, who the
instructors were, how much experience the instructors
had teaching the course, and what the student to instructor
ratio was, but there will be other factors that are harder to
measure, such as whether a class was held at 8 a.m. leading
some students to show up late, a particularly nasty flu on
campus that semester, or whether the instructor was
preoccupied preparing their tenure packet. These known
and unknown course features interact to either improve
or depress student performance within a course. The impact
of the unique features of courses on students leads to
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data clustering within courses and violates the assumption of
independence [22]. Given that numerous student-, course-,
and institution-level features can influence student perfor-
mance, researchers should use a method that accounts for
the nesting of student data when analyzing hierarchical
datasets. Table I shows example variables that a researcher
may want to account for within each hierarchical level.

B. Modeling

Social scientists have used three primary methods to
analyze hierarchical datasets: disaggregation, aggregation,
and HLM. To examine the implications of using these three
methods, we will apply each of them to a sample multilevel
dataset (shown in Table II) to predict student post-test
performance on the FCI. The dataset includes information

about the students (level 1) and the courses they are nested
in (level 2).

1. Disaggregation

In reviewing the literature, we found that physics
education researchers commonly used disaggregation to
analyze hierarchical datasets. Disaggregation ignores all
nesting in the dataset and either excludes level-2 data or
treats it as level-1 data. For example, many investigations of
gender differences in introductory physics courses disag-
gregated data across multiple courses and largely ignored
course-level data to obtain large enough samples to support
their investigations (e.g., Refs. [19,23–25]). In another
example, Nissen and Shemwell [26] investigated gender
differences in student’s experiences. Their data nested
multiple experiences (level 1) within students (level 2).
They disaggregated the data by treating gender as a level-1
variable instead of using HLM to account for the experi-
ences nesting within the students. Linear regressions of
disaggregated data fail to account for course-level variance
in hierarchical datasets and violate the method’s assump-
tions of independence [20,27,28]. This can lead to bias in
findings, an underestimation of the standard error, and
artificially small p values [8,22].
A single-level linear regression of the disaggregated data

from our example data found that student SAT verbal
scores had a small negative association (−0.067) with FCI
post-test scores [Fig. 1(b)]. In other words, the model
predicted students with higher SAT verbal scores would
have slightly smaller FCI post-test scores. This slight
negative association came from the small negative trend
between SAT verbal scores and FCI post-test scores.

2. Aggregation

Aggregation collapses level-1 data into level-2 data.
In the case of our example dataset, we averaged the
student-level variables of SAT verbal scores and FCI
post-test scores within each course to create class mean
SAT verbal scores and class mean FCI post-test scores,
which is shown in Fig. 1(c). A single-level linear regression
of the aggregated course-level data finds that course mean
SAT verbal scores have a negative association (−0.2) with
course mean FCI post-test scores [Fig. 1(c)]. In this case the
aggregation model identified a similar negative association
between course mean SAT verbal score and FCI post-test
scores as the disaggregation model, but the negative
coefficient was 3 times larger.
In reviewing the literature, we found that physics educa-

tion researchers sometimes use aggregation to analyze
hierarchical datasets. Hake [4] aggregated students across
courses to investigate differences in student conceptual
learning in active engagement and lecture-based courses.
By aggregating student-level data into course-level data,

researchers lose all information about student-level vari-
ability. Aggregation treats each group equally and fails to

TABLE I. Factors at each hierarchical level that may affect
students’ concept inventory post-test score.

Hierarchical
level

Example of
hierarchical

level Example variables

Level 3 Institution level
Public vs private
2-year vs 4-year
Teaching intensive

Level 2 Course level

Curriculum
Small-group work

Learning assistants
Instructor experience
Class mean pretest

Level 1 Student level

Gender
Race or ethnicity
Major

Math preparation
SAT scores
Pretest score
Self-efficacy

TABLE II. Sample multilevel dataset.

Student
(Level 1)

Course
(Level 2)

Student
SAT verbal
(Level 1)

FCI
post-test
(Level 1)

1 1 500 50
2 1 600 70
3 2 550 40
4 2 650 60
5 3 600 30
6 3 700 50
7 4 650 20
8 4 750 40
9 5 700 10
10 5 800 30
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account for precision of the measurements. For example, a
class with 10 students can have an equally large impact on
a model as a class of 500 students. By eliminating all
lower-level data, aggregation meets the assumption of
independence. As such, aggregation can be an appropriate
method if one is only interested in course-level processes.
Aggregation can cause several errors, however, when inves-
tigating the impact of student-level factors. One potential
error is a shift in meaning. For example, our aggregation
model that examines the course mean SAT score can say
something about the impact of a course context, but does not
address the impact of an individual student’s SAT verbal
score. Themajority of the variability in student scores comes
from the student level, not the course level [8,10]. Examining
only the impact of course-level variables on student perfor-
mance ignores most of the variability in outcomes and can
distort relationships between variables.
Researchers will sometimes combine aspects of the

disaggregation and aggregation techniques into a single
MLR model. For example, in Kost and colleague’s
examination of the gender gap in introductory physics
courses [23], they examined data from 2099 students
in seven first-semester mechanics physics courses. They
disaggregated their data and analyzed it using multiple
linear regression models. To account for the fact that their
dataset included data from multiple semesters, they
included a dummy variable for each semester, which
allowed the model to begin to account for differences
in average scores across semesters. While including a
variable for each group in a dataset can improve the
quality of a single-level model examining hierarchical
data, it has significant limitations. For example, to include
level-2 dummy variables in the MLR developed in Sec. IV
would require the inclusion of 111 additional variables
(1 less than the number of courses in the dataset) and
would limit our findings about the impact of course
features on the model.

3. Hierarchical linear modeling

Hierarchical linear modeling (HLM) does not have the
assumption of independence (unlike disaggregation and
aggregation) and was developed specifically to analyze
hierarchical datasets [8,10]. HLM accomplishes this by
creating unique regression models for each course to model
student-level variables and examines difference between
sections to model course-level variables. Analyzing the
data from Table II with HLM shows a positive association
(0.2) between student SAT verbal and FCI post-test scores
and a negative association (−0.2) between class mean SAT
Verbal and FCI post-test scores [Fig. 1(d)]. In other words,
the model predicts the highest FCI post-test scores for
students with high SAT verbal scores in classes with low
average SAT verbal scores.
HLM provides the advantages of both disaggregation

and aggregation without introducing their shortcomings
[8,10] making it the preferred method for handling multi-
level data. To accomplish this, HLM creates a set of
equations that nests level-2 equations within level-1 equa-
tions. Equations (1)–(3) illustrate a basic HLM model with
one predictor variable at level 1 (Lvl1variable) and one at
level 2 (Lvl2variable). In HLM equations the i subscript
denotes level-1 units (e.g., students) and the j subscript
denotes level-2 units (e.g., courses).
Level-1 Equation:

Outcomeij ¼ β0j þ β1jLvl1variableij þ rij: ð1Þ

Level-2 Equations:

β0j ¼ γ00 þ γ01Lvl2variablej þ u0j; ð2Þ

β1j ¼ γ10 þ u1j: ð3Þ

HLM creates a level-2 equation for each level-1 coef-
ficient, which equations (2) and (3) illustrate. In contrast,

FIG. 1. Example dataset of the relationships between SAT verbal and Force Concept Inventory (FCI) post-test scores analyzed using 4
different methods. (a) A plot of the raw data without any model. (b) Disaggregation, which ignores any course groupings and analyzes
all of the student-level data. (c) Aggregation, which averages student-level data to create course-level data and then analyzes them.
(d) Hierarchical linear modeling (HLM), which analyzes student- and course-level data simultaneously. We adapted the figure from an
example in Snijders and Bosker [22] and Woltman et al. [8].
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the coefficients in MLR models are all values. In HLM, a
researcher can allow for variation across groups for each
level-1 variable by including a new variance term (u) in
the level-2 equations; this is denoted by u0j and u1j in
equations (2) and (3). This variance term allows the
relationship with the associated level-1 variable to differ
across groups. For example, a researcher may want to allow
the impact of student gender on test scores to vary across
courses because they believe that it will have a larger
impact in some course contexts than others. Level-1
variables are called random slope variables if they have
a variance term (e.g., u1j) associated with them and are
called fixed slope if they do not. The coefficients in the
level-2 models (represented by γ) are referred to as fixed
effects because they are not allowed to vary across groups
while the u terms are called random effects because they
account for the random differences between the groups.
While including additional variance terms allows models to
be more flexible, they also require more statistical power
and are only recommended if they improve the fit of a
model.
The nesting of level-2 equations within the level-1

equation allows the model to account for variance at both
levels simultaneously. By accounting for variance at
multiple levels, HLM can test for dependencies among
level-1 units (students) within each level-2 unit (course).
These coefficients are generated from a combination of
information from each individual course’s data and overall
information across all of the courses. To combine infor-
mation from the individual courses and the grand mean,
HLM uses Bayes “shrinkage estimators” that take into
account several factors about each course. Of the factors,
the sample size within the course is the most important [29].
By developing a model with no predictor variables,

called the unconditional model, researchers can use
HLM to calculate the variance at both the student level
½variance ðrijÞ ¼ σ2 ¼ within group variance� and the class
level ½variance ðu0jÞ ¼ τ2 ¼ between group variance�. The
percentage of the total variance (τ2 þ σ2) attributed to the
between group variance (τ2) is known as the intraclass
correlation coefficient (ICC). The ICC quantifies the share
of the differences in student scores caused by differences
in students versus differences in courses. If the data do not
significantly vary at the class level (ICC < 5%), then a
single-level and hierarchical model will likely provide
similar findings and MLR may be appropriate. However,
the only way to know that HLM and MLR provide similar
results is to run both analyses and compare them.

ICC ¼ ðbetween group varianceÞ=ðtotal varianceÞ ð4Þ

¼ var:ðu0jÞ=½var:ðu0jÞ þ var:ðrijÞ� ð5Þ

¼ τ2=ðτ2 þ σ2Þ: ð6Þ

C. HLM assumptions

While HLM has fewer assumptions than standard
regression analysis, failure to meet model assumptions
can still lead to misrepresentations of the relations in the
data and p values [22]. HLM’s four assumptions are
(i) linearity—the dependent variables should vary linearly
with the explanatory variable, (ii) independence of
residuals—level-1 and level-2 residuals are uncorrelated,
(iii) homoscedasticity—residuals should be distributed in a
normal and homoscedastic (i.e., similarly across the range
of outcome values) manner, and (iv) random intercepts—
variables must be allowed to have random intercepts [22].
There are a variety of methods by which the assumptions of
HLM can be checked, many of which involve visual
inspection of residual plots [30]. We will demonstrate
some of these methods for checking HLM assumptions
in Sec. IV where we analyze an HLM model. There are
methods for fixing HLM models that violate assumptions.
For example, if the assumption of linearity is violated,
performing a transformation of a variable (e.g., squaring or
log transformation) may fix it. For more information about
the assumptions of HLM and how to check them, we
recommend referencing Snidjers and Bosker’s book on
multilevel analysis [22] or Loy’s dissertation on diagnostics
for mixed or hierarchical linear models [31].
Because HLM allows for variance at all levels, it creates

a separate regression model for each course that accounts
for its unique features. It then combines the course models
to create a set of coefficients that describe the larger
dataset. This hierarchical structure provides HLM several
advantages over MLR. HLM can accommodate missing
data (at level 1), small and/or discrepant group sample
sizes [8], and nonsphericity (i.e., a sample is from a
population in which either variances are not equal or
correlations are nonzero) [32].
The primary disadvantage of HLM for researchers is that

it requires more statistical power (i.e., larger sample sizes)
than MLR. HLM also requires sufficient samples at each
level of the model. Heuristics for the minimum sample at
level 2 vary by citation and can be as large as 50, but Maas
and Hox [33] found that level-2 sample sizes as small as 10
can produce unbiased estimates.

IV. APPLICATION

In Sec. III, we used example data to highlight the
theoretical differences between MLR and HLM. While
this shows how HLM can create more accurate models
when analyzing hierarchical datasets, it fails to demonstrate
whether using MLR and HLM lead to meaningfully
different conclusions when analyzing real-world physics
student data. To test how using these two analytical
techniques may lead to different conclusions about physics
student learning, we reanalyzed a dataset from a prior
investigation [34] using both MLR and HLM. In addition
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to illustrating how analysis methods can influence findings,
this section serves to demonstrate the appropriate steps in
developing HLM models.
The original investigation disentangled the relationships

between learning assistants (LAs), the collaborative learn-
ing activities that they support, and student learning.
Learning assistants are undergraduate students who,
through the guidance of weekly preparation sessions and
a pedagogy course, facilitate discussions among groups of
students in a variety of classroom settings that encourage
active engagement [35]. To isolate the relationship between
LAs and student learning, Herrera et al. [34] compared
student learning across courses in which instructors
reported using lecture, collaborative learning without
LAs, or collaborative learning with LAs.

A. Research question

In our reanalysis of the data using MLR and HLM, we
interpret our models to answer the following question:

• How does the use of MLR or HLM impact findings
about the efficacy of physics course pedagogical
practices?

B. Methods

1. Data collection and preparation

Our study analyzes course and student Force Concept
Inventory (FCI) [3] and the Force and Motion Conceptual
Evaluation (FMCE) data from the Learning About STEM
Student Outcomes (LASSO) platform. The LASSO plat-
form is hosted on the LA Alliance website [36] and collects
large-scale, multi-institution data by hosting, administer-
ing, scoring, and analyzing pretest and post-test research-
based assessments online.
To clean the data, we removed assessment scores from

students who took less than 5 min on the assessment or
completed fewer than 80% of the questions. Five minutes
provided a reasonable minimum amount of time for a
student to complete the CI while reading and answering
each question. We removed courses with less than 40%
student participation on either the pretest or post-test from
the data. Lack of student participation led to the removal of
44 courses from the dataset. Of the 44 courses removed, 8
had no pretests, 11 had no post-tests, and 25 had less than
40% participation on the post-test. The filters for time and
completion removed 269 pretest scores and 398 post-test
scores. This led to the removal of 258 students from the
dataset who did not have either a pretest or post-test score.
Table III shows the number of students, courses, and
students remaining in the dataset after each step of data
cleaning. The final dataset included data from 5959
students in 112 courses at 17 institutions with missing
data for 15% of the pretests and 30% of the post-tests. This
resulted in 55% of the responses having matched pretest
and post-test which falls in the middle of the 30% to 80%

range of matched data reported in the PER literature [37].
We calculated pretest and post-test scores using the total
percentage correct of all the items on the assessment.
After cleaning the data, we used hierarchical multiple

imputation (HMI) with the hmi [38] and mice [39] pack-
ages in R-Studio V. 1.1.456 [40] to address missing data.
HMI maximizes statistical power by addressing missing
data while taking into account the hierarchical structure of
the data [41–44]. HMI addresses missing data by (i) imput-
ing each missing data point m times to create m complete
datasets, (ii) independently analyzing each dataset, and
(iii) combining the m results using standardized methods
[45]. Multiple imputation does not produce specific values
for missing data; rather, it uses all the available data to
produce valid statistical inferences [43].
PER seldom uses multiple imputation [46–48] and

prefers to use complete-case analysis [37], where research-
ers discard cases that do not include both a pretest and a
post-test. However, research indicates that multiple impu-
tation leads to better analytics than traditional methods such
as complete-case analysis [41]. While traditional methods
for addressing missing data are computationally simple,
they have likely biased findings and measures of statistical
significance [37,42]. A significant driver of bias in student
gains using complete case analysis comes from differential
participation rates across physics performance groups.
Students who perform well in a physics course tend to
have high pretest scores, earn higher grades in the course,
and participate at higher rates on low-stakes assessments
[48]. The bias in participation leads samples to underrep-
resent low-performing students. Multiple imputation can
use data that is linked to student performance (i.e., pretest
and post-test scores) to mitigate some of the bias in
sampling when imputing values for students with partial
data. While no research has empirically established how
much of the bias in gains is accounted for by pretest or post-
test scores, other performance indicators, such as final
grades in a course, have been shown to account for bias in
gains [37]. Extensive research indicates that in almost all
cases MI is both more accurate and more statistically
powerful than complete-case analysis [43,49].
Our HMI model included the following variables: con-

cept inventory used, student pretest and post-test scores and
durations, whether it was a student’s first time taking the
course, student race or ethnicity, student gender, and the
type of instruction in the course. We expected these

TABLE III. Size of the dataset after each step of filtering.

Initial
Course

participation
Time and
completion

Institutions 20 17 17
Courses 156 112 112
Students 8329 6217 5959
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variables accounted for some of the bias in missing data,
and that MI produced more accurate and reliable results
than complete-case analysis. The data collection platform
(LASSO) provided complete datasets for the concept
inventory variables, student demographics, and instruction
type. The 45% rate of missing data (15% on pretests plus
30% on post-tests) in this study was within the normal
range for PER studies [48]. The HMI produced 10 imputed
complete datasets. We analyzed all 10 imputed data sets
and combined the results. Final results were created by
averaging the test statistics (e.g., model coefficients) and
using Rubin’s rules to combine the standard errors for these
test statistics [44]. Rubin’s rules combines the standard
errors using both the within-imputation variance and the
between-imputation variance with a weighting factor for
the number of imputations used. All MI assumptions were
satisfactorily met for all of the MI analyses. For readers
seeking more information on MI, Schafer [44] and Manly
and Wells [43] present overviews of MI and we provide
a companion article on missing data and multiple impu-
tation in pretest and post-test data in PER in this special
issue [37].

2. Model development

We used the mitml [50] and lme4 [51] packages in R to
analyze the 10 imputed datasets and pool the results. Figure 2
shows ourwork flow for the data collection and analysis. The
MLR and HLM models we developed included identical
variables, with the exception of a variable (u0j) that allowed
the HLM model to account for course-level groupings of
student data. The Supplemental Material [52] includes data
and R code for running theMLR andHLMmodels on one of
the 10 imputed datasets.
To investigate student learning, we developed a set of

HLM models to predict student gains (post-test–pretest).
The use of gains as the outcome variables is functionally
equivalent to using the post-test score as the outcome
variable in our models, but leads to findings that are more

easily interpretable. As the mean scores for the pretest
(36%) and post-test (55%) in our dataset indicate that the
floor and ceiling effects were limited, no transformation of
the data was required prior to analysis [53]. In our analysis,
pretest and gains are represented as a percentage correct.
Our HLM models were all two-level with student data in
the first level and course data in the second level. We chose
not to develop three-level models with institutional data
in the third level because we were limited by the number
of institutions in our dataset (n ¼ 17) and because our
exploratory analysis did not indicate that the inclusion of
a third level changed the findings.
We developed our models, shown in Table IV, for student

gain scores through a series of additions of variables.
Model 1, the unconditional model, predicted student gains
without level-1 or level-2 predictor variables. The uncondi-
tional model allowed us to calculate the intraclass corre-
lation coefficient (ICC) by comparing the course- and
student-level variance in the HLM version of model 1.
The ICC indicated course-level effects accounted for 13%
of the variation in student gains and fell above the heuristic
threshold of 5%, indicating the need for analysis with
HLM.
We developed models 2–6 by the incremental addition

of predictor variables that either improved the model fit or
served to answer the research questions. With the exception
of model 2, each model introduced 1 new variable. Model 2
introduced the variables for classes that use LAs (LAj) and
collaborative learning without LAs (CollNoLAj) at the
same time as they were the two variables of interest in our
study. We evaluated each model on whether the inclusion of
its additional variable improved the model’s goodness of
fit. Goodness of fit can be assessed through the examination
of several different statistics such as Akaike information
criterion (AIC), Bayesian information criterion (BIC), and
variance explained. As there is currently no agreed upon
way to pool the AIC or BIC statistics for multilevel models
across multiply imputed datasets, we used variance
explained to select our final model. Because we want
the simplest model that can account for the most variance
we only included variables that could explain at least 1% of
the student- or course-level variance. Table IV shows the
equations used in each model and the variances at each
level. Additional variables examined included student
pretest score (StudentPreij), course mean pretest score
(CoursePrej), a random effect variable (u1j), and an
instrument variable (FMCEj). StudentPreij was group
mean centered and CoursePrej was grand mean centered.
Details about centering are included in the subsequent
Sec. IV B 3.
We concluded that model 3 was our best model. While

the inclusion of StudentPrej in model 3 decreased the
level-2 explained variance by 3%, it improved the level-1
explained variance by 16.2%. The HLM version of model 3
is specified in Eqs (7)–(9) and the MLR version is specified

FIG. 2. Work flow for collecting, preparing, and analyzing the
data using MLR and HLM. In the circles, blue represents data,
white represents missing data, and navy blue represents imputed
data. Squares represent results.
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in Eq. (10). Each of the variables included in models 4, 5,
and 6 failed to improve the fit of the model by at least 1% at
either the student or course level.
HLM Level-1 Equation (Model 3):

Gainij ¼ β0j þ β1jStudentPreij þ rij: ð7Þ

HLM Level-2 Equations (Model 3):

β0j ¼ γ00 þ γ01LAj þ γ02CollNoLAj þ u0j; ð8Þ

β1j ¼ γ10: ð9Þ

MLR Equation (Model 3):

Gaini ¼ β0 þ β1StudentPrei þ β2LAi

þ β3CollNoLAi þ ϵi: ð10Þ

3. Centering

Researchers can choose to leave variables uncentered or
center them using either group mean centering or grand
mean centering. Group mean centering centers a student
variable (i) within a related course variable (j). In other
words, group mean centering transforms the student var-
iable to be a measure of how much that student variable
differed from the course’s mean. In contrast, grand mean
centering centers the individual student variable (i) about
the average for all students on that variable. Centering

variables can make the model easier to interpret and can
change the value and meaning of the coefficients in the
model. The type of centering researchers use depends on
their research questions. A detailed discussion of all of the
reasons, costs, and affordances for centering variables
exceeds the scope of this article, but we provide a brief
justification of our choices and recommend interested
readers review the literature on centering in HLM [54–57].
For ease of interpretation, we group mean centered

StudentPreij. This has two effects on the models. First,
the intercept β0j represents the predicted gain for a student
who had the average pretest score in their course (i.e.,
group). Second, the coefficient for StudentPreij informs
the relationship between an above (or below) average
pretest in a course and the predicted gain. We used group
mean centering because that is generally recommended in
the literature. This is particularly useful in our case where
an uncentered model predicts values for a pretest of zero,
which is unlikely [57] and more difficult to interpret. Group
mean centering StudentPreij kept the intercept consistent
across the models and producedmodels with lower variance.
Group mean centering StudentPreij can hide dif-

ferences between courses because it centers all of the
courses around their own mean pretests. Therefore, we
included the level-2 variable CoursePreij in model 5 to
inform the extent to which predicted gains differed across
courses with different pretest distributions. We grand
mean centered CoursePreij to maintain the models as
predicting the gain for a student in a course with an

TABLE IV. Model development with final estimation of variance components (Var.) and the percent variance
explained (% expl.) compared to model 1, the unconditional model. The inclusion of additional variables (shown in
bold) in models 4, 5, and 6 failed to improve the percent explained variance by more than 1% at either level. We used
model 3 to compare MLR and HLM.

Model Level Equation Var. % expl.

1 1 gainij ¼ β0j þ rij 409.8 � � �
2 β0j ¼ γ00 þ u0j 60.6 � � �

2 1 gainij ¼ β0j þ rij 409.8 0%
2 β0j ¼ γ00 þ γ01 � LAj þ γ02 � CollNoLAj þ u0j 56.6 6.6%

3 1 gainij ¼ β0j þ β1j � StudentPreij þ rij 343.5 16.2%

2
β0j ¼ γ00 þ γ01 � LAj þ γ02 � CollNoLAj þ u0j 58.8 3.0%
β1j ¼ γ10

4 1 gainij ¼ β0j þ β1j � StudentPreij þ rij 340.3 17.0%

2
β0j ¼ γ00 þ γ01 � LAj þ γ02 � CollNoLAj þ u0j 58.8 3.0%
β1j ¼ γ10 þ u1j

5 1 gainij ¼ β0j þ β1j � StudentPreij þ rij 343.5 16.2%

2
β0j ¼ γ00 þ γ01 � LAj þ γ02 � CollNoLAj þ γ03 � CoursePrej þ u0j 59.4 2.0%
β1j ¼ γ10

6 1 gainij ¼ β0j þ β1j � StudentPreij þ rij 343.5 16.2%

2
β0j ¼ γ00 þ γ01 � LAj þ γ02 � CollNoLAj þ γ03 � FMCEj þ u0j 59.4 2.0%
β1j ¼ γ10
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average mean pretest score since a course with a mean
pretest score of zero is highly improbable. The R code
included in the Supplemental Material [52] shows the
specifics of how the centering was performed.
While the pretest scores are not the focus of this study,

they are included because they are strong predictors of
student gains and improve the model’s fit. We will not,
however, substantively discuss them in our interpretation of
the models.
We left all other variables in the model uncentered.

4. Assumption checking

We are unaware of any simple method to pool the
multilevel models created by multiply imputed datasets in
a way that allows for a combined checking of assump-
tions. For this reason, we performed the assumption checks
10 times, once for each MI dataset. The assumption checks
led to similar findings across each version of model 3.
For simplicity, we only report the assumption check
analysis of the model 3 from the first MI dataset. To test
the assumption of linearity, we plotted the residual variance
against the fitted values [Fig. 3(a)]. In our visual inspection
of Fig. 3(a) we saw no obvious trends and concluded that
the model met the assumption of linearity. To test for
homogeneity of variance we created a boxplot of the
residuals across courses [Fig. 3(b)] and performed an
ANOVA of the residuals across courses. Avisual inspection
of the boxplot showed the courses’ residuals had consistent
medians and interquartile ranges and therefore met the
assumption of homogeneity of variance. The ANOVA
supported our visual check because it did not find a
statistically significant difference (p > 0.05) in the varian-
ces across courses. Finally, we visually checked the
assumption of normality of residuals using a quantile-quantile
plot of the observed and expected values [Fig. 3(c)]. We
concluded that the model met the assumption of normality

of residuals because of the linearity of the data in the plot.
In Sec. III C we pointed out four assumptions for HLM.
We did not test the fourth assumption for random intercepts
because it was inherently met by our use of HLM.

5. Descriptive statistics

Table V describes the number of students and courses in
each category and the mean gains by course (aggregated)
and by student (disaggregated). Most of the courses in the
data used LAs (n ¼ 70) and most of the students in the data
were in those LA-using courses (n ¼ 4100). The mean
gains by course and by student tended to be within a few
percentage points with the exception of collaborative
courses. The mean gain for all of the students in collabo-
rative courses was 25.0 percentage points. In contrast, the
mean gain for the collaborative courses was 15.4 percentage

FIG. 3. A visual check of the three assumptions of HLM model 3 from the first MI dataset. (a) Assumption of linearity—A plot of
residuals vs fitted values. A random distribution of sample points indicated the model met the assumption of linearity. (b) Assumption of
homogeneity of variance—A boxplot of residuals by course. Consistent medians and interquartile ranges indicated the model met the
assumption of homogeneity of variance. This assumption was further verified quantitatively using an ANOVA. (c) Assumption of
normality—A quantile-quantile plot of the observed and expected values. The points falling close to the line indicated that the model
met the assumption of normality.

TABLE V. Counts and mean gains by instrument and course
type. Mean gains were examined at the course level through
aggregation and student level through disaggregation. Course
types were lecture (Lect.), collaborative without LAs (Collab.),
and collaborative with LAs (LAs).

Instrument Course type

Total FCI FMCE Lect. Collab. LAs

Course
Count 112 92 20 18 24 70
Gain (% pts) 16.3 17.5 19.1 14.2 15.4 19.5
St. Dev. 9.3 9.4 9.3 9.4 11.6 7.9

Student
Count 5959 4077 1882 791 1068 4100
Gain (% pts) 18.8 19.4 19.2 12.0 25.0 19.3
St. Dev. 21.6 21.0 22.9 19.8 21.8 21.5

MODERNIZING USE OF REGRESSION MODELS … PHYS. REV. PHYS. EDUC. RES. 15, 020108 (2019)

020108-9



points. We investigated the raw data to understand why this
large difference in mean gains occurred.
Twenty-four courses with 1068 students used collabo-

rative learning. Two of these courses included 248 and 251
students with mean gains of 33.7 and 31.9 percentage
points, respectively. The 22 other courses that used col-
laborative learning included 569 students and the course
mean gain for those 22 courses was 12.6 percentage points.
These differences illustrate how a few courses with
relatively large learning gains and large enrollments can
result in large differences between the aggregated and
disaggregated means.
The differences between calculating mean gains using

aggregation and disaggregation are more stark when
examining the standard deviations. The standard deviation
of the gains more than doubled in nearly every category
when calculated using course (aggregation) versus student
gains (disaggregation).
It is not necessarily surprising that the standard deviation

of the course data is smaller than the student data.
Aggregating the course data reduces the range of values
likely to occur, leading to smaller standard deviations for
the course level data than the student level data. For
example, some students gains were negative, but no course
gains were similarly low. Standard deviation (which is the
square root of the deviance) plays a central role in many
statistical analyses and variations in its value can mean-
ingfully impact any associated findings.

C. Findings

Table VI shows the coefficients for both the MLR and
HLM versions of model 3. Some of the coefficients
remained consistent across the models while others varied
by large amounts. For example, the coefficients for being in
a class with LAs (þ7.27 for MLR andþ5.94 for HLM) and
their statistical significances (p < 0.001 for MLR and p ¼
0.012 for HLM) were similar in both models. The coef-
ficient for collaborative learning without LAs, however,
differed in both its magnitudes (þ12.99 for MLR and

þ3.26 for HLM) and its statistical significances (p < 0.001
for MLR and p ¼ 0.283 for HLM).
Figure 4 shows the predicted gains for an average student

in an average course based on model 3 for both the HLM
and MLR analyses. The predicted gains for students in
lecture-based and LA-supported courses did not vary much
between the MLR and HLMmodels. The predicted gain for
students in collaborative learning courses without LAs,
however, went from being 2.1× the gains of lecture-based
courses in the MLR model to being 1.2× in the HLM
model. The course context with the largest gains also
switched from collaborative learning in the MLR model to
LA supported courses in the HLM model. As indicated by
the error bars in Fig. 4, the difference between predicted
gains in collaborative and LA supported courses was
statistically significant in the MLR analysis but not in
the HLM analysis. These large differences between the
MLR and HLM analysis for collaborative courses were
largely driven by the two outlier collaborative courses. The
two outlier collaborative courses had larger enrollments and
larger mean gains than the other 22 collaborative courses.
The MLR model ignored the structure of the data and
overweighted the importance of the two outlier courses.

D. Discussion

Our comparison of MLR and HLM with real physics
course data demonstrates that the theoretical differences
between MLR and HLM can lead to important differences
in model findings. In this example, the MLRmodel predicts
that courses that use collaborative learning without LAs
have the largest student gains. In contrast, the HLM model
predicts no statistically significant differences between
collaborative with and without LAs. The MLR model also

TABLE VI. MLR and HLM coefficients for model 3. Variable
labeling is consistent with the HLM model.

Final estimation of fixed effects

MLR HLM

Fixed effect Coef. S.E. p Coef. S.E. p

For Intercept 1 β0
For Int., 2 γ00 12.01 0.95 <0.001 13.76 2.14 <0.001
LA, γ01 7.27 1.01 <0.001 5.94 2.36 0.012
CollNoLA, γ02 12.99 1.29 <0.001 3.26 3.02 0.283
For StudentPre
slope, β1

For Int., 2 γ10 −0.44 0.02 <0.001 −0.44 0.02 <0.001

FIG. 4. Predicted gains for average students across course
contexts as predicted by HLM and MLR using model 3. Gains
were measured as the change in percentage of the questions
correct from the pretest to the post-test. Error bars are �1
standard error. Error bars vary in size based on the number
and spread of student scores in each course context.
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produced artificially small standard errors that were around
half the size of those produced by HLM. The difference
between the HLM and MLR models resulted from MLR
failing to account for two large, outlier courses. These two
courses had half of the total students in collaborative
courses and had much higher gains than the other 22
collaborative courses. MLR’s overconfidence in model
precision increases the odds of making type I errors in
which coefficients are falsely identified as being sta-
tistically significantly different from zero. The conclusions
and recommendations that one might make to instructors,
administrators, and policy makers greatly differ between
the two regression techniques used to analyze this dataset.
These analyses demonstrate the importance of using a
method designed for modeling hierarchical data to analyze
educational data with students nested within courses.
When analyzing multilevel data it is very unlikely that

the student data will be independent. Most likely there will
be course-level differences that lead student outcomes
within a course to be clustered, thereby creating depend-
encies in the dataset. MLR models do not account for these
dependencies because one of the assumptions of MLR is
that the data are independent. HLM is designed to address
these dependencies by leveraging the group correlations to
accurately identify both level-1 effects and level-2 effects.
Even if there are no level-2 predictor variables included in
a model, HLM can account for the impact of the unknown
course differences (e.g., percent majors, time of day,
curriculum, and instructor experience). To accomplish this,
HLM allows each level-2 group to vary independently.
While HLM’s flexibility allows it to handle more diverse
datasets and create more accurate models it also creates its
biggest drawback: lower statistical power.

V. CONCLUSION

MLR can be a powerful tool for isolating variables of
interest while accounting for other variables. MLR models,
however, assume that each data point in the dataset is
independent from all other data points. This assumption is

often not true for datasets with hierarchical data (e.g.,
students within multiple courses) and can create biased
findings. The historical failure to account for the hierar-
chical structure of the data in many PER studies calls into
question the validity and reliability of their claims.
HLM leverages the hierarchical structure of datasets to

create more accurate estimates of variable coefficients
across levels. HLM has been in use since the mid 1980s
[58] and commercial software designed to perform HLM
has been available since the 1990s [59]. While the field of
PER has not broadly adopted the use of HLM, the use of
HLM in the larger field of education research started in
the 1990s [60] and has become more commonly used in the
intervening decades. HLM models require more data and
calculations than MLR models but with the availability of
large-scale databases (e.g., DataExplorer [61], E-CLASS
[62], and LASSO [36]) and modern computer processors
significantly reduce these barriers to use. Physics education
researchers will hopefully use the power of these large-
scale hierarchical datasets to answer novel research ques-
tions. When analyzing these hierarchical datasets, however,
it is important that physics education researchers adopt
the use of appropriate quantitative methods (i.e., HLM).
Analyzing hierarchical datasets with MLR may bias or
skew results, and it could take PER researchers extensive
effort to undo the harm caused by the findings and
implications derived from the use of improper analysis
techniques. While no simple, post hoc fix exists for studies
that used inappropriate modeling techniques, we hope that
this article will support future researcher’s use of HLM
when analyzing hierarchical datasets.
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