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Physics instructors and education researchers use research-based assessments (RBAs) to evaluate students’
preparation for physics courses. This preparation can cover a wide range of constructs, including mathematics
and physics content. Using separate mathematics and physics RBAs consumes course time. We are developing a
mechanics cognitive diagnostic (MCD) as an online test using both computerized adaptive testing and cognitive
diagnostic models. This design allows the MCD to assess mathematics and physics content knowledge within
a single assessment. Our work used an evidence-centered design framework to inform the extent to which our
models of skills students develop in physics courses fit the data from three mathematics RBAs. Our dataset
came from the LASSO platform and includes 3,491 responses from the Calculus Concept Assessment, Calculus
Concept Inventory, and Pre-calculus Concept Assessment. Our model included five skills: apply vectors, con-
ceptual relationships, algebra, visualizations, and calculus. The “deterministic inputs, noisy ‘and’ gate” (DINA)
analyses demonstrated a good fit for the five skills. The classification accuracies for the skills were satisfactory.
Including items of the three mathematics RBAs in the MCD’s item bank will provide a flexible assessment of
these skills across mathematics and physics content areas that can adapt to instructors’ needs.
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I. INTRODUCTION

Instructors and researchers often use research-based as-
sessments (RBAs) to evaluate students’ performance and the
effectiveness of different pedagogies in physics education re-
search [1–3]. For example, the Force Concept Inventory
(FCI) [4] assesses students’ understanding of force concepts,
and the Calculus Concept Inventory (CCI) [5] assesses cal-
culus knowledge; both are important in introductory physics
courses [6]. By assessing students’ knowledge, instructors
can adjust their teaching approaches to better fit their stu-
dent’s needs, and researchers can identify effective pedagogi-
cal practices [7] and inequities in the course outcomes [8–10].

Mathematics ability is foundational for learning in physics
[11]. Some physics instructors use mathematics RBAs to as-
sess the student’s mathematical readiness level and compre-
hension of mathematical concepts [1]. For instance, PhysPort
(a website with resources for teaching physics) provides nine
mathematics RBAs appropriate for physics courses [12]. In-
structors can use these RBAs to better support students in ac-
quiring the mathematics knowledge they need to succeed in
their physics courses.

Using mathematics RBAs poses physics instructors and
researchers with the dilemma of choosing what to mea-
sure: specific physics content knowledge, mathematics con-
tent knowledge, or affective measures like self-efficacy. All
RBAs on PhysPort, for example, use fixed-length designs that
require using the whole assessment or risking undermining
the validity of arguments for the assessment. This design and
length also limit using these assessments in a time-effective
manner, such as for weekly quizzes. Reducing the test length
while maintaining test validity requires extensive work. Com-
puterized adaptive testing (CAT) can address this issue by op-
timizing test length [13] to accurately measure each student’s
proficiency level [14].

We are developing the mechanics cognitive diagnostic
(MCD) as an online adaptive RBA for introductory physics
courses using both CAT and cognitive diagnostic (CD) mod-
els [15]. The CAT selects the next item based on a student’s
previous responses to obtain the most information possible
[16]. The CD model measures student mastery of several
skills that students need to succeed in physics. The efficiency
of the CAT allows the CD models to assess many skills. The
CD model uses a Q-matrix to link test items to each skill to
generate a profile of an individual’s skill mastery [17, 18].
The MCD, thus, enables instructors or researchers to accu-
rately and efficiently assess both overall student proficiency
and specific skill mastery.

The MCD assesses four skills for the physics content ar-
eas (i.e., apply vectors, conceptual relationships, algebra, and
visualizations)[15], which comprise the student model (see
Sec. II). The MCD item bank largely draws physics items
from the Force Concept Inventory [4], Force and Motion Con-
ceptual Evaluation [19], and Energy and Momentum Con-
ceptual Survey[20]. To extend the validity arguments for the
MCD’s student model and to identify mathematics items for

inclusion in the MCD, we asked the following research ques-
tion for three mathematics RBAs: the Calculus Concept As-
sessment (CCA) [21], the Calculus Concept Inventory (CCI)
[5], and the Pre-calculus Concept Assessment (PCA) [22].

• What skills from our student models, if any, did the
three mathematics RBAs measure?

To support readers’ interpretation of our research, Table I
includes a selection of terms and their definitions [15].

II. THEORETICAL FRAMEWORK

We used evidence-centered design (ECD) [30] to inform
our development of the MCD, concentrating on collecting ev-
idence to support claims about a student’s skills [31]. The
ECD consists of five models (see Fig. 1) to provide a frame-
work for designing and developing RBAs. To address our
research question, we focused on the student and evidence
models from the ECD to assess skills in the mathematics con-
tent areas. The student models aim to determine the vari-
ables (i.e., skills and content areas) related to performance
that our assessment seeks to measure, ensuring that the as-
sessment aligns with our intended goals. The evidence mod-
els, which consist of evidence rules and the measurement
model as sub-models, establish the criteria for evaluating an
RBA. Although not the focus of this investigation, we will
provide an overview of parts (3)-(5) of the ECD as they of-
fer relevant context for this work. The task model is centered
around multiple-choice questions, each with a definitive right
or wrong answer. The assembly model integrates the student,
evidence, and task models to estimate the overall students’
proficiency and their skill mastery profile. The delivery sys-
tem model uses the LASSO platform [32, 33] to administer
the assessment online and address test security and timing.

III. MATERIALS AND METHODS

The LASSO platform provided the dataset for this research
purpose [32]. The dataset consists of 3,493 first-year college
student responses across three post-course assessments: the
CCA (17 items - 1,292 students), CCI (22 items - 940 stu-
dents), and PCA (25 items - 1,259 students). Four institu-
tions used the CCA in 53 courses, seven used the CCI in 113
courses, and eight used the PCA in 40 courses. Mathemat-
ics courses used all three RBAs while data also came from
four physics courses that used the CCA or CCI. The analysis
excluded students who took less than five minutes to com-
plete the assessment or did not answer all of the items. In
cases where students completed the same assessment multi-
ple times, we only used their first response recent post test.

We used an iterative, mixed-methods approach to analyze
the extent to which the student models of skills fit the three
mathematics RBAs (CCA, CCI, and PCA). We started with
the four skills developed for the physics content: apply vec-
tors, conceptual relationships, algebra, visualizations. We de-
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TABLE I. Definitions of terms.
Term - Definition
Computerized adaptive testing (CAT) - Administered on computers, the test adaptively selects subsequent test items based on each test
taker’s previous responses to match the demonstrated proficiency [14, 16, 23].
Q-matrix - A Q-matrix, or “question matrix,” is a binary matrix that maps the relationship between test items and the underlying skills
they measure. Each row represents a test item, and each column represents a specific skill. An entry of 1 in the matrix indicates that a
particular skill is assessed by the corresponding item, while a 0 indicates that the skill is not assessed.
Cognitive diagnostic (CD) assessment - An assessment method that evaluates students on specific skills to determine mastery. In contrast
to traditional assessment methods that measure students on a single proficiency, CD provides diagnostic information on skill strengths
and weaknesses to support personalized educational strategies [24, 25].
Classification accuracy - The agreement between observed and true skill classifications. In practice, this is calculated using the expected
skill classifications rather than the true classifications, which is detailed in an example around Equations 4 and 6 in Ref. [26].
Deterministic inputs, noisy “and” gate (DINA) model - A cognitive diagnostic model assuming that a student must master all the
required skills to solve an item correctly. The absence of any required skills cannot be compensated by the mastery of others. This
model operates within a binary framework, categorizing each skill as either mastered or not mastered [25, 27–29].
Evidence-centered design (ECD) model - A framework for developing educational assessments based on establishing logical, evidence-
based arguments [30].

FIG. 1. An evidence-centered design (ECD) model for the creation of mechanics cognitive diagnostic (MCD) [15].

veloped these skills based on learning objectives from physics
courses using standards-based grading, e.g., [34], and tested
them with data from three physics RBAs [15]. We added the
calculus skill, which was not assessed by the physics RBAs,
to ensure the student model covered all of the items on the
mathematics RBAs. In total, we coded the items for the
five skills in our student models [15]: 1) apply vectors, 2)
conceptual relationships, 3) algebra, 4) visualizations, and 5)
calculus (see Table II). We then empirically tested the fit of
these codes using the “deterministic inputs, noisy ‘and’ gate”
(DINA) model (see Table I). The input of the DINA model
is a Q-matrix, which specifies the relationship between test
items and required skills using binary entries. Each row rep-
resents a test item, and each column corresponds to a skill,
indicating whether a skill is needed for an item (see Table
III). One of the outputs from the DINA model provides a sug-
gested Q-matrix for each RBA to refine our qualitative cod-
ing. The empirical results for each RBA suggested changes
to the initial qualitative coding. The coders then reviewed
these suggested changes and agreed on accepting or rejecting
each suggestion. The process concluded with a final DINA
analysis of the updated codes.

Our coding team consisted of three researchers with

physics backgrounds. Coders independently coded items to
create Q-matrices. For the initial coding, we compared our
codings to reach a consensus on each item. After running the
DINA analysis, we reviewed the suggested Q-matrices of the
DINA model, and came to a consensus on accepting or re-
jecting each proposed change. The final consensus coding of
the three RBAs provided inputs into the final DINA analysis
presented herein.

We used the G-DINA package in R to analyze our data
[35]. Two fit indices were calculated to assess the DINA mod-
els fit: the root mean square error of approximation based
on the M2 statistic (RMSEA2) and the standardized root
mean square residual (SRMR). Lower values of RMSEA2
and SRMR indicate a better fit. Models with RMSEA2 values
lower than 0.06 indicate a good fit and up to 0.08 represent an
acceptable fit [36]. Models with SRMSR values below 0.05
indicate a good fit and up to 0.08 represent an acceptable fit
[37, 38]. The DINA model produces classification accuracy
scores that quantify the accuracy of the model’s estimation of
students’ skill mastery. Classification accuracies range from
0-1, with values greater than or equal to 0.9 considered high
[39, 40] and values greater than 0.8 are acceptable [41].
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TABLE II. Definition of the skills present in the three RBAs.

Skills Definition
Apply Vectors Item requires manipulating vectors in more than

one dimension or has a change in sign for a 1-D
vector quantity.

Conceptual
Relationships

Item requires students to identify a relationship
between variables and/or the situations in which
those relationships apply.

Algebra Item requires students to reorganize one or more
equations. This goes beyond recognizing the
standard forms of equations.

Visualizations Item requires extracting information from or cre-
ating formal visualizations such as xy plots, bar
plots, or line graphs.

Calculus Item requires applying limits, derivatives, or in-
tegrals (i.e., rates of change.)

TABLE III. The table provides the Q-matrix for the first five CCI
items. A 1 indicates the item measured the skill, and 0 is otherwise.

Item Apply Conceptual Algebra Visualizations CalculusVectors Relationships
1 0 0 1 0 0
2 0 1 1 0 0
3 0 1 0 0 1
4 1 0 0 0 0
5 0 0 0 0 1
6 1 0 0 0 0

TABLE IV. Q-matrix modifications and adoption rates.

Total
Items

Possible
Changes

Suggested
Changes

Adopted
Changes

Adoption
Rate

Change
Rate

CCA 17 85 3 1 33% 1.2%
CCI 22 110 15 4 27% 3.6%
PCA 25 100 15 1 7% 1.0%
Overall 64 295 33 6 18% 2.0%

TABLE V. Model fit by assessment

CCA CCI PCA Cutoff
RMSEA2 0.026 0.008 0.034 0.050
SRMSR 0.034 0.033 0.044 0.050

IV. FINDINGS

Two results from our analyses support the student mod-
els of the five skills fitting the data well. First, across the
three RBAs, the initial DINA model suggested 33 out of 295
possible changes (see Table IV). The coding team adopted
six of those suggestions, giving an overall change rate of
2.0%. Second, the final DINA models for each of the three
RBAs demonstrated good fit with RMSEA2 less than 0.04
and SRMSR less than 0.05 for all three mathematics assess-
ments (see Table V).

TABLE VI. The distribution of items across the number of skills.

Total items N(%)
1 2 3

CCA 17 4 (23%) 10 (59%) 3 (18%)
CCI 22 15 (68%) 7 (32%) 0 (0%)
PCA 25 15 (60%) 8 (32%) 2 (8%)
Overall 64 34 (53%) 25 (39%) 5 (8%)
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FIG. 2. The distribution of items across skills and assessments.

In terms of which skills the three RBAs assessed, the ag-
gregate number of items assessing conceptual relationships,
algebra, visualizations, and calculus skills ranged from 17 to
36 items (see Fig. 2). Only three items in total assessed the
apply vectors skill. The sum of the item counts for each as-
sessment in Fig. 2 exceeds the total number of items on each
RBA, as shown in Table IV because some items assessed mul-
tiple skills. Slightly more than half of the items only assessed
one skill (see Table VI) with many assessing two skills and
only a few assessing three skills.

The CCA and the CCI assessed all five skills, while the
PCA only assessed four of the skills (see Fig. 2). Thus,
the DINA model created 14 classification accuracies across
the three RBAs that are shown in Table VII. Three of the 14
classification accuracies were below 0.8. The lowest clas-
sification accuracies were for the apply vectors skill on the
CCA (0.64) and CCI (0.58), which only had two and one
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TABLE VII. Skill classification accuracy by assessment.

Apply Conceptual Algebra Visualizations CalculusVectors Relationships
CCA 0.64 0.87 0.86 0.70 0.88
CCI 0.58 0.94 0.94 0.92 0.94
PCA - 0.92 0.90 0.92 0.84

item, respectively. These results indicate that the MCD will
need additional items to assess the apply vectors skill. Seven
of the classification accuracies were good (greater than or
equal to 0.9) and four classification accuracies were accept-
able (greater than 0.8 but less than 0.9). Because the MCD
will draw on items from all three of these RBAs, as well as
additional future items, to assess these skills, we expect the
combined item bank will support acceptable classification ac-
curacies for the MCD.

V. DISCUSSION AND CONCLUSION

The three RBAs contain finer-grained information about
students than just their overall performance. Our analysis
found that the five-skills student model fit the data well for
all three mathematics RBAs. In addition, the DINA model
showed high to acceptable classification accuracies for four
of the five skills: conceptual relationships, algebra, visualiza-
tions, and calculus. The apply vectors skill only had three
items across the three RBAs which resulted in the observed
low classification accuracy for that skill. We aim to ensure
high classification accuracy by including a minimum of 10
items for each combination of content area and skill. This
strategy will also make sure that we have enough items to as-
sess student proficiency. Instructors can use this fine-grained,
formative assessment to adjust their teaching to meet each
student’s needs and abilities.

If given student skill mastery profiles, instructors could ad-
just their instructional strategies in different ways. For in-
stance, consider a student who has mastered algebra but has
not mastered vectors skills. Instructors can use this informa-
tion to assign students instructional interventions that focus
on developing the student’s ability to apply vectors in physics
contexts. Instructors could also create groups of students
with complementary skill sets for collaborative assignments
or labs. This strategy would support students in learning from
each other’s strengths while receiving support in their weaker
content areas.

Many introductory physics courses expect students to have
fluency in using vectors as vectors are foundational to many
physics concepts [11]. However, few items on the three
mathematics RBAs assessed the apply vectors skill. Physics
RBAs, such as the Test of Understanding of Vectors [42]
and the Vector Evaluation Test [43], cover vectors in depth.
We are developing the MCD by combining mathematics and
physics RBAs to provide a large item bank to classify physics
students’ mastery of all skills.

The findings in this analysis may be limited in their ap-
plication to the MCD because the MCD focuses on physics
courses and content, and these instruments and the analyzed
data largely came from mathematics courses. The analyses
in this paper also do not reflect how the MCD will operate.
Instead, they provide validity evidence for the student models
for the MCD and to guide the development of the item bank
for the MCD. Subsequent analyses of the MCD will inves-
tigate the extent to which the MCD measures the proposed
student models of skills.

The CCI and PCA were able to measure multiple skills
with high classification accuracies, four and three respec-
tively. Physics instructors, however, may want to assess their
students across several different constructs: mathematics and
physics conceptual knowledge and affective traits such as
self-efficacy or attitudes about experiments. The more time
students spend taking these assessments the less time they
have for other learning activities and the lower the quality of
their responses. We are developing the mechanics cognitive
diagnostic (MCD) in the online LASSO platform to address
this issue. The MCD minimizes test length while still main-
taining measurement accuracy by selecting items for students
to complete that provide the most information. Instructors
can use the MCD to test these skills across content areas in
physics and mathematics. Our purpose is to create a larger
MCD item bank, including three physics RBAs, three mathe-
matics RBAs, and others to address the skill gaps, within the
context of teaching introductory physics.

The adaptive nature of the MCD allows instructors to use
it as a pre/post test at the beginning and end of a course or
as a weekly formative assessment. Instructors choose which
skills and content areas to assess and when to assess them.
This flexibility provides timely feedback on individual stu-
dent’s learning. Researchers can also use this longitudinal
data across skills and content areas to model student learning
trajectories and identify effective learning activities for each
location on that trajectory.
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