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evidence of their impact on student outcomes. Measuring this 
impact can show students the value of engaging in new peda-
gogies that may differ from their expectations, can help con-
vince colleagues to adapt or improve their teaching practices 
systematically, and can persuade administrators to devote 
institutional resources to sustain or expand course transfor-
mations. On a larger scale, RBAs can aid in assessment of 
learning outcomes at the departmental or academic unit level 
and inform the development of instructional methods and 
materials.   

One major benefit of RBAs over traditional assessments 
(e.g., a course final exam) is the ability to compare results to 
data from other educators and institutions. Comparisons 
with national datasets can provide a context for interpreting 
results from your own classroom. This context is important 
because these concept inventories can challenge students 
despite formal instruction “covering” the material. For exam-
ple, raw gains from pretest to posttest on the FCI and FMCE 
are approximately 15% in lecture-based courses and 20% in 
transformed courses.3 To make a case either for the need for 
additional support (if student learning is low) or for contin-
ued funding (e.g., for a learning assistant program facilitating 
interactive instruction), it is important to contextualize data 
to demonstrate need or effectiveness. 

Many RBAs have normative data available in the litera-
ture, either in publications introducing the instrument or in 
literature reviews. While these publications provide useful 
comparisons, the student populations represented in them are 
typically from research-intensive, selective universities whose 
students are less diverse and better prepared mathematically 
than are average students1 and therefore may not be general-
izable to more diverse student populations and institutional 
contexts. Making the matter worse, many of the studies report 
their gains using normalized gain, a biased measure that fa-
vors high pretest score groups.4 To address these limitations 
in the literature, we used data from both the literature and 
the online LASSO platform’s multi-institution database. The 
LASSO data were almost exclusively collected online, whereas 
only two of the 17 studies from the literature reported some 
online data collection. Multiple studies indicate online ad-
ministration and in-class administration of RBAs produces 
similar results.5-7

Methods
Data collection

LASSO is an online platform hosted on the Learning Assis-
tant Alliance website (https://learningassistantalliance.org). 
LASSO provides course instructors with the ability to collect 
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Research-based assessments (RBAs) measure how 
well a course achieves discipline-specific outcomes. 
Educators can use outcomes from RBAs to guide in-

structional choices and to request resources to implement and 
sustain instructional transformations. One challenge for using 
RBAs, however, is a lack of comparative data, particularly giv-
en the skew in the research literature toward calculus-based 
courses at highly selective institutions.1 In this article, we 
provide a large-scale dataset and several tools educators in 
introductory physics courses can use to inform how well their 
courses foster student conceptual understanding of Newto-
nian physics. The supplemental materials2 include this dataset 
and these tools. Educators and administrators will often tar-
get courses with high drop, withdrawal, and failure rates for 
transformations to student- 
centered instructional strategies. RBAs and the comparative 
tools presented herein allow educators to address critiques 
that the course transformations made the courses “easier” by 
showing that the transformed course supported physics learn-
ing compared to similar courses at other institutions. Educa-
tors can also use the tools to track course efficacy over time.

The supplemental material2 includes the dataset and analy-
sis code both as an Excel file and an R file for readers to create 
their own visualizations to understand and communicate one 
aspect of what is occurring in their courses. The dataset con-
sists of courses from the online Learning About STEM Stu-
dent Outcomes (LASSO) platform and from the literature that 
used either the Force Concept Inventory (FCI) or the Force 
and Motion Conceptual Evaluation (FMCE). The LASSO 
platform administers and scores a wide range of RBAs online, 
and we describe LASSO further in the “Methods” section. As 
we will show, the LASSO dataset is less skewed toward courses 
with high pretest scores than the literature, thereby it provides 
a more representative sample of course efficacy. The tools pro-
vided include a scatterplot of pretest and posttest scores for all 
courses in the dataset that can show how a course compares to 
other courses before and after instruction and a distribution 
of the effect sizes for the shifts on conceptual understanding 
for all courses. Educators can use the tools in the supplemen-
tal material to create visualizations comparing their target 
courses to the entire dataset.

Research-based assessments (RBAs) measure the effec-
tiveness of a course in achieving discipline-specific, con-
tent-based learning outcomes or positive attitudinal shifts—
for example, an instructor can administer the FCI prior to and 
after instruction to measure shifts in student understanding 
of Newtonian physics. For educators implementing new 
research-based instructional strategies, RBAs can provide 



180	 THE PHYSICS TEACHER ◆ Vol. 60, March 2022

tests where students took more than five minutes and com-
pleted more than 80% of the test. We then used MI to impute 
missing data for individual student scores and calculated a 
single dataset of course averages from the multiple imputed 
datasets. We then combined the LASSO data with the data 
from the literature. Several of the studies in the literature were 
missing either pretest or posttest means or standard devia-
tions. We used MI to impute these missing data points and 
averaged the multiple imputed datasets into a single dataset. 
Averaging multiple imputed datasets is not the best practice 
as it creates artificially small error bars; however, it served our 
purpose of being able to share data and resources that any in-
structor could use to interpret the results in their courses.

Multiple linear regression 
To understand what variables were important for look-

ing at the relationships between pretest scores and posttest 
scores, we built multiple linear regressions. Our regression 
models predicted class mean posttest scores (posttest mean) 
using pretest mean, pretest mean squared, test, course type, 
and instruction type. Pretest mean is the course’s mean pretest 
score. Pretest mean acted as a proxy for the courses’ student 
population’s prior physics knowledge and opportunities. We 
included pretest mean because prior performance is consis-
tently the best predictor of future performance. Including it 
helped to account for systemic differences between course 
types and institution types. We included pretest mean squared 
to account for any non-linearity in the model that could occur 
from courses with either very low (floor effects) or very high 
(ceiling effects) means. For example, as pretest scores get clos-
er to 100% gains will decrease; pretest mean squared allowed 
the overall relationship between posttest mean and pretest 
mean to curve and account for both ceiling and floor effects. 
This curved relationship occurs in Fig. 2. Test informed if the 
relationships differed for the FCI and FMCE. Course type dif-
ferentiated between algebra- and calculus-based mechanics 
courses. Instruction type differentiated between lecture-based 
and interactive engagement (IE) instruction. The multiple 
linear regressions produced models using every combination 
of the predictor variables to predict posttest means. We used 
Akaike information criterion corrected (AICc)10 scores to 
identify which model provided the most information and to 
remove any redundant or uninformative variables.

Effect size
We analyzed the course-level gains from pretest to posttest 

using Cohen’s d with Hedges’ correction as a measure of effect 
sizes, given in Eq. (1). Cohen’s d calculates how many stan-
dard deviations the mean score for a course shifted and is a 
very common metric for measuring the efficacy of a course 
or intervention in the education literature.11 In addition to its 
prevalence, we used Cohen’s d because it handles both ceiling 
and floor effects by using standard deviation in the denom-
inator. When course means fall near the floor or ceiling of a 
measurement, the individual scores will cluster more tightly 
and have a smaller standard deviation. Hedges’ correction ad-

student assessment data online through a process designed 
to reduce the instructor and class time to give an assessment 
and to use the collected data. LASSO collects two levels of 
data: course-level data and student data. Instructors provide 
course-level data when setting up the assessment by describ-
ing the course context and teaching method, and providing 
a student roster with emails. Student-level data include de-
mographic data, assessment metadata (such as time taken on 
the assessment), and responses to the individual assessment 
questions. Students complete the assessment via a website link 
sent to their email. LASSO processes the student responses 
to provide instructors with a report that includes summative 
statistics and a histogram of student performance. The reports 
are being updated to include the visualizations presented in 
this publication. For students who agreed to share their data 
for research, the platform anonymizes the data and makes it 
available to researchers.

To expand the dataset beyond the LASSO database, we 
collected descriptive statistics from studies using either the 
FMCE or FCI. We searched journals that typically publish 
physics education research (PER): Physical Review Physics Ed-
ucation Research, the PER Conference Proceedings, the Amer-
ican Journal of Physics, and The Physics Teacher for relevant 
articles. We included all 17 articles that reported pretest and 
posttest mean scores. Whenever a study reported data for in-
dividual courses, we included the data for each course. Several 
studies only reported statistics that combined courses, which 
is why the literature had more students but fewer courses than 
LASSO. The data from the literature do not overlap with the 
LASSO data. We excluded studies that only reported normal-
ized gain because our purpose was to look at the relationships 
between pretest and posttest means. The supplementary ma-
terial includes an Excel document with all the data used in the 
study.2 The dataset includes 309 courses: 202 courses from the 
LASSO platform for 12,879 students and 107 courses from the 
literature for 23,882 students.

Multiple imputation
We handled missing data and the uncertainty it introduces 

using multiple imputation (MI).8 In statistics, imputation 
replaces missing values with probable values. In PER studies 
using pretests and posttests, researchers often handle miss-
ing data by removing every student that does not have both 
a pretest and a posttest, a procedure known as complete case 
analysis. Statisticians do not recommend this practice because 
it often biases the results and instead refer to MI as the gold 
standard for handling missing data.8 MI allows analyses to 
use all the data by imputing the missing values multiple times 
to create multiple complete datasets and then combining the 
results from all of those analyses to produce unbiased esti-
mates with accurate uncertainties. Nissen, Donatello, and Van 
Dusen9 showed that MI produces more accurate results than 
complete case analysis with RBA data. Schafer8 discusses MI 
in detail.

For the LASSO data, we filtered the data to remove stu-
dents that did not take the test seriously by only including 
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dresses bias toward larger effect sizes when analyzing smaller 
sample sizes (N), which in this case was the number of stu-
dents in a course. The supplemental materials2 include a tool 
to conduct these calculations.

e
		

	                (1)	

Findings
Comparing LASSO and the literature

The distributions of scores indicated that the 207 courses 
in the LASSO data included more courses with lower pretest 
scores and fewer courses with very high pretest scores than 
the 102 courses from the literature. We illustrate these differ-
ences in Fig. 1. Combining the LASSO and literature data pro-
vides a larger and broader sample of courses for comparison.

Statistical relationships between pretest and 
posttest scores

Our final linear regression model, shown in Eq. (2), in-
dicated that all the variables other than test type (test) were 
important to include. This model indicates that gains in the 
average course with a pretest near either the bottom or the top 
of the data distribution (20 or 65 percentage points, respec-
tively) will be around 13 percentage points, while courses with 
a pretest in the middle of the distribution (near 45 percentage 
points) will have gains around 18 percentage points (see Fig. 
2). Algebra-based courses tended to have larger gains by about 
2.4 percentage points, and courses that used IE instruction 
tended to have 4.1 percentage point larger gains, which rep-
resents a 22% to 31% increase in learning in those courses and 
aligns with prior research on IE instruction.12,13  

x_ 
post  =  0.65 + 1.81* x_ 

pre   – 0.00947*( x_ 
pre )2 + 4.05 * IE 	

             +  2.41 * Algebra.	  	                                       (2)

Plot of data for educators
Figure 2 plots pretest and posttest scores for all 309 cours-

es. Instructors can use this plot to inform how their courses 
compare to the courses in our dataset. The supplemental 
files2 include an Excel file and R code to generate the plots 
with one’s own courses overlaid on the plots. The black line 
on the scatterplot is the LOESS line of best fit, and it shows 
the average posttest value for any given pretest. The further 
a course falls from the black fit line on the scatterplot, the 
more exceptional the course. The shaded region around the 
black line represents the uncertainty in the estimate with 95% 
confidence intervals and shows how uncertainty increases 
due to the smaller number of courses near both ends of the 
fit line. The density plots show the spread of the data for pre-
test and posttest scores. The blue dashed lines on the density 
plots represent the median values. Educators using the plot 
should keep in mind that it may take several data points to get 
a consistent picture of course outcomes. If an instructor’s or 
a department’s courses tend to show the same picture (above, 
below, or average), then they can act on that information. 
Instructors seeking to improve their instruction can find 
resources at the PhysPort and Learning Assistant Alliance 
websites. 

 
Effect size as an additional metric for looking at  
instruction

We also used effect size to investigate the effectiveness of 
courses and provide a second method for contextualizing 
course outcomes. Figure 3 shows the distribution of effect 
sizes for all 309 courses with the median value of 1.03 stan-
dard deviations. In addition to plotting their course pretest 
and posttest scores, educators can interpret the effectiveness 

Fig. 1. Distribution of mean pretest and posttest scores in 
LASSO and the literature, showing that LASSO represents a 
different distribution of courses than those in the published 
literature.

Fig. 2. Scatterplot of mean pretest and posttest scores for all 
309 courses. The scatterplot includes a LOESS line of best fit 
with 95% confidence intervals shown in gray. The confidence 
intervals describe the certainty of the LOESS fit line. The col-
ors differentiate between courses with effect sizes above and 
below the median value. The density plots represent the dis-
tribution of mean pretest and posttest scores with the median 
indicated by the blue dashed line.



182	 THE PHYSICS TEACHER ◆ Vol. 60, March 2022

References:
1. 	 Stephen Kanim and Ximena C. Cid, “The demographics of 

physics education research,” Phys. Rev. Phys. Educ. Res. 16, 1–17 
(2020).

2. 	 Readers may view these materials at TPT Online, http:// 

10.1119/5.0023763, under the Supplemental tab. 
3. 	 Xochith Herrera, Jayson M. Nissen, and Benjamin Van Dusen, 

“Student outcomes across collaborative learning environments,” 
Proc. 2018 Phys. Educ. Res. Conf. 1-4 (2018).

4. 	 Jayson M. Nissen, Robert M. Talbot, Amreen Nasim Thomp-
son, and Ben Van Dusen, “Comparison of normalized gain and 
Cohen’s d for analyzing gains on concept inventories,” Phys. Rev. 
Phys. Educ. Res. 14, 1-12 (2018).

5. 	 Bethany R. Wilcox and Steven J. Pollock, “Investigating stu-
dents’ behavior and performance in online conceptual assess-
ment,” Phys. Rev. Phys. Educ. Res. 15, 1-10 (2019).

6. 	 Jayson M. Nissen, Manher Jariwala, Eleanor W. Close, and Ben 
Van Dusen, “Participation and performance on paper-and com-
puter-based low-stakes assessments,” Int. J. STEM Educ. 5, 1-17 
(2018).

7.	 Scott Bonham, “Reliability, compliance, and security in web-
based course assessments,” Phys. Rev. ST Phys. Educ. Res.  4, 1-8 
(2008).

8.	 Joseph L. Schafer, “Multiple imputation: A primer,” Stat. Meth-
ods Med. Res. 8, 3-15 (1999).

9. 	 Jayson M. Nissen, Robin Donatello, and Ben Van Dusen, 
“Missing data and bias in physics education research: A case for 
using multiple imputation,” Phys. Rev. Phys. Educ. Res.  15, 1-15 
(2019).

10. 	 Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike Information 
Criterion Statistics (D. Reidel, Dordrecht, The Netherlands, 
1986).

11. 	 Matthew A. Kraft, “Interpreting effect sizes of education inter-
ventions,” Educ. Res. 49 (4), 241–253 (2020).

12. 	 Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle 
K. Smith, Nnadozie Okoroafor, Hannah Jordt, and Mary Pat 
Wenderoth, “Active learning increases student performance in 
science, engineering, and mathematics,” PNAS 111 (23),  8410–
8415 (2014). 

13. 	 Richard R. Hake, “Interactive-engagement versus traditional 
methods: A six-thousand-student survey of mechanics test data 
for introductory physics courses,” Am. J. Phys. 66, 64–74 (Jan. 
1998).

Nissen Education Research and Design, Corvallis, OR; 	
jayson.nissen@gmail.com

of their instruction using a rule of thumb of an effect size of 
1.0 as being average on the FCI and FMCE. Figure 2 shows 
consistency between effect size and the line of best fit for the 
pretest and posttest scores as courses with effect sizes greater 
than the median tended to have test scores above the line of 
best fit. 

Discussion
Instructors interested in interpreting their course’s gains 

on RBAs have lacked a large dataset for comparison. Norma-
tive measures in the literature skew toward courses with high 
pretest scores at research-intensive institutions and are limit-
ed by the common reporting of normalized gain rather than 
descriptive statistics and effect size measures with statistical 
foundations. We overcame these issues through a combina-
tion of published studies and data collected online through 
the LASSO platform. 

Using data from the literature and the LASSO platform, we 
built a dataset and visualizations of FCI and FMCE scores in-
structors can use to inform how their courses compare to nor-
mative data across a broad spectrum of student preparation 
levels. These tools allow instructors to compare their courses’ 
pretest scores, posttest scores, gains, and effect sizes to the 
larger dataset. For educators interested in a simpler metric 
than a scatterplot, we recommend using an effect size mea-
sure. We found that the median effect size was approximately 
1. While d equals 1 is a good rule of thumb for FCI and FMCE 
scores, educators and researchers should not apply it to other 
instruments without further investigations.

For educators who wish to measure and improve their 
instruction, online resources have made it easier than ever to 
examine student outcomes (e.g., using LASSO) and find ped-
agogical practices to improve them (e.g., using PhysPort or 
the Learning Assistant Alliance). The LASSO platform on the 
website for the Learning Assistant Alliance hosts a Shiny App 
that can generate these figures.

Fig. 3. A density plot of the effect sizes with a dashed blue 
median line showing that a typical effect size is very near 1. This 
density plot shows the probability of different effect sizes; the 
area under the curve integrates to 1.


