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Educators and researchers often use research-based assessments before and after instruction to measure
the efficacy of courses. Limited resources exist for interpreting assessment results, particularly for attitudinal
surveys. We present analyses and representations created with data from 192 introductory physics courses
that educators and researchers can use to provide a context for interpreting results from the Colorado
Learning Attitudes About Science Survey. The provided data came from the online Learning About STEM
Student Outcomes platform and from the scientific literature. The representations include scatter plots of
pretest and post-test scores and distributions of effect sizes. Educators and researchers can use these
representations to show how courses compare to the larger database before and after instruction. Results
almost always associated physics courses for nonscience majors with shifts to more expertlike attitudes,
whereas this was the case for approximately one-third of introductory physics courses for science majors.
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I. INTRODUCTION AND MOTIVATION

Professional physicists tend to hold a set of attitudes
about what it means to learn and do physics [1–3]. Many of
these cultural attitudes in physics, such as valuing com-
petition, individualism, solitary practice, and genius, have
greater costs for women and Black, Indigenous, and people
of color [4–6]. In this article, we focus on cultural attitudes
beneficial for learning and integration into the physics
community [7,8] such as viewing physics as applicable to
daily life, perceiving personal effort as supporting learning
physics, and taking approaches to solving and understand-
ing physics problems that value sense making over memo-
rization [9]. Students who do not start college holding a
vast majority of these attitudes seldom become physicists in
the current educational system [1,2]. Yet, physics instruc-
tors often rank attitudes toward and appreciation of physics
as less important course outcomes than conceptual under-
standing and problem solving [10]. That lack of value
likely plays a role in how many college physics courses,
particularly courses for physical science majors, and degree
programs do not support attitude development [1,2,11].
These characteristics of physics education imply that

physics programs filter out students who do not already
hold these attitudes when they enter college physics courses
[1,2]. This filtering effect disproportionately harms women
and Black, Indigenous, and people of color [12].
Supporting students in developing expertlike attitudes
may support them in having a more enjoyable and
productive experience in their physics courses and may
support physics departments in recruiting and retaining
more and more diverse physics majors.
Research-based curriculum focused on conceptual learn-

ing are not sufficient for supporting students in developing
beneficial attitudes about physics [13]. Instead, curriculum
that improve these attitudes such as Physics and Everyday
Thinking for future educators [14] and Modeling
Instruction in courses for science majors [15,16] explicitly
focus on attitude development and conceptual learning as
mutual goals. The Physics by Inquiry curriculum, which
also improves student attitudes, implicitly focuses on
attitude development while explicitly emphasizing con-
ceptual learning [17]. These results show that students’
attitudes become more expertlike in courses that emphasize
attitudinal development and conceptual learning. Most
algebra- and calculus-based physics courses, however, do
not explicitly target attitudes about science [10].
To measure shifts in students’ attitudes about physics,

educators can administer the Colorado Learning Attitudes
about Science Survey (CLASS) [3] prior to and after
instruction. The CLASS examines attitudes about the
nature of physics knowledge and its relation to everyday
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life, ideas about learning and problem solving, and attitudes
toward sense making [9,18]. Instructors can compare
students’ responses to those given by physics experts to
indicate the extent to which students’ attitudes become
more expertlike following instruction. Measuring students
developing expertlike attitudes can inform pedagogical
choices, help convince colleagues to adapt or improve
their teaching practices, persuade administrators to sustain
or expand course transformations, and guide the develop-
ment of evidence-based instructional strategies.
Many research-based assessments like the CLASS have

normative data available in the literature that provide
context for interpreting local results. Although some
publications provide comparison data for the CLASS
[11], the literature overrepresents research-intensive, selec-
tive universities with less diverse and better mathematically
prepared students [19]. Therefore, these studies may not
generalize to more diverse student populations and institu-
tional contexts. To address these limitations in publications,
we used data (see Supplemental Material [20]) from both
the literature and the online Learning About STEM Student
Outcomes (LASSO) platforms. For the CLASS, many
researchers only report the shifts in scores and not the
scores at the beginning and end of instruction [11]. Not
reporting scores from the beginning of instruction may hide
biases in the literature (i.e., the scores may only come from
selective, research-intensive institutions and calculus-based
courses [19]). This reporting practice means that educators
cannot situate their courses in terms of students’ initial
attitudes within much of the existing literature.
This article provides a large-scale dataset of CLASS

scores and tools for interpreting the impact of courses on
students’ self-reported attitudes about physics as compared
to experts’ attitudes in the Supplemental Material [20]. The
dataset includes courses from the LASSO platform and
from research literature reporting sufficiently detailed
student outcome data. The tools include a scatter plot of
pretest and post-test CLASS scores for all physics courses
in the dataset and a distribution of the effect sizes for
the shifts on students’ attitudes for all courses. The
Supplemental Material includes an Excel file and an R
file with the data and code for readers to create their own
visualizations to understand and communicate their courses
impacts on students’ attitudes [20].

II. PURPOSE

By providing benchmarks for students attitudes about
physics, we hope to support educators in creating and
using pedagogical practices in their classrooms that foster
expertlike attitudes. These benchmarks can help identify
the efficacy of innovations and provide context for sharing
these innovations. Evidence-based pedagogical practices
that support students in developing expertlike attitudes
benefit students, educators, and departments. By improving
students’ experiences and learning outcomes in physics

courses, these curriculum support departments in recruiting
and supporting more, more diverse, and better prepared
students.

III. METHODS

A. Data collection

LASSO is an online assessment platform hosted on the
Learning Assistant Alliance website [21] that collects two
levels of data: course data and student data. Instructors
describe the course context, teaching method, and provide a
student roster with emails when setting up the assessment.
LASSO then allows instructors to email assessment
invitations to students to take the assessment online.
Information collected from the students includes demo-
graphic data, assessment metadata (e.g., time taken on the
assessment), and responses to the individual questions.
LASSO provides instructors with a report that includes
summary statistics and visualizations of student perfor-
mance. The platform anonymizes the data and makes it
available to researchers only for students who agree to
share their data for research.
We used Google Scholar [22] to search all articles that

cited the initial CLASS publication (Adams et al. [3]) and a
review of attitudes in physics (Madsen et al. [11]). This
search provided 26 articles or dissertations that reported
pretest and post-test mean scores. We included the data for
individual courses whenever possible. Several studies
reported statistics that combined courses, which we
included as a single course. The literature (48 courses with
8630 students) and LASSO data (144 courses with 7094
students) did not overlap.
We identified courses as being either calculus-based (for

physical science and engineering majors) or algebra-based
(for other science majors), for nonscience majors, or for
future educators. We did not differentiate between intro-
ductory mechanics and electricity and magnetism courses
because preliminary analyses indicated that CLASS scores
were similar in these course types. Not distinguishing
between mechanics and electricity and magnetism simpli-
fied the figures and tables. We excluded modern physics
courses from Ref. [23] to simplify the analyses because all
of the courses came from the same institution. Course
descriptions and course numbers in the LASSO database
along with college catalogs provided information for
identifying the courses. The physics courses for future
educators were predominantly for future elementary edu-
cators and most were taught using Physics by Inquiry or
Physics and Everyday Thinking, which are designed to
support the development of expertlike attitudes about
physics.
We combined the two datasets and did not focus on

differences between the literature and LASSO data.
Identifying differences between the two data sources was
limited by the literature only containing enough courses to
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make quantitative comparisons for calculus-based physics
and physics for education majors. Consistent with Kanim
and Cid [19], the scores reported in the literature tended to
be higher than the scores reported on LASSO: approx-
imately 1 percentage point for calculus-based courses and
8 percentage points for courses for education majors.
Comparing the shifts from pre to post as measured by
effect sizes in these two course types, we found similarities
between the data from LASSO and the literature: dLASSO ¼
−0.11 and dlit ¼ −0.07 for calculus-based courses and
dLASSO ¼ 0.41 and dlit ¼ 0.49 for courses for education
majors. We describe calculating effect sizes below in
Sec. III C. Combining the two data sources provided a
larger and more diverse dataset.
We scored the CLASS responses using the 36 item agree

scoring scheme recommended by the authors [3]. While
studies have problematized the use of all 36 items [9] and
the category collapsing used in the scoring scheme [24], we
used the author’s scoring recommendations as they likely
align with educator’s scoring practices and are used in the
literature.

B. Multiple imputation

Physics education research studies often handle missing
data by removing every student that does not have both a
pretest and a post-test, which is often called complete case
analysis. Statisticians recommend against using complete
case analysis because it often biases the results and instead
recommend multiple imputation or other principled meth-
ods for handling missing data [25]. Multiple imputation
uses all available data by imputing the missing values
multiple times to create multiple complete datasets.
Multiple imputation then combines the results of the
analyses of each imputed dataset to produce unbiased
estimates with accurate uncertainties. Nissen et al. [26]
showed that multiple imputation produces more accurate
results than complete case analysis with RBA data for
physics education research studies. Schafer [25] provides a
detailed overview of multiple imputation.
To remove spurious data, we filtered the LASSO data for

students that completed the assessment in under 3 min or
failed to correctly answer the filter question [3]. We then
used hierarchical multiple imputation [27] to impute scores
for students who completed only the pretest or post-test and
created a single dataset of course average scores. Averaging
multiple imputed datasets is not the best practice as it
creates artificially small error bars; however, it sufficed for
this analysis as we did not need to propagate the errors and
it allowed us to create visualizations to help educators and
researchers contextualize course outcomes. Several studies
in the literature only provided partial information (e.g.,
post-test scores or no standard deviations) and we used
multiple imputation to impute their missing values after
combining the course-level data from LASSO and the
literature.

C. Effect size

We reported the course-level shifts from pretest to post-
test using Cohen’s d with Hedges correction as a measure
of effect sizes, given in Eq. (1). Cohen’s d calculates the
shift in the mean score from pretest to post-test in standard
deviations. Hedges correction addresses bias toward larger
effect sizes for smaller sample sizes. Kraft [28] provides a
guide to using and interpreting effect sizes.

d ¼ xpost − xpre
ðsdpost þ sdpreÞ=2

ðN − 3Þ
N − 2.25

ffiffiffiffiffiffiffiffiffiffiffiffi

N − 2

N

r

: ð1Þ

IV. FINDINGS

We present the findings for CLASS scores across four
types of introductory physics courses: calculus-based
courses, algebra-based courses, courses for future educators,
and courses for nonsciencemajors.The first subsection below
focuses on mean pretest and post-test scores for courses. The
second subsection focuses on effect sizes for courses.

A. CLASS scores across course types

Figure 1 plots the course pretest and post-test scores and
distributions of course scores for the four course types.

FIG. 1. Scatter and density plots for pretest and post-test
attitudes in the four types of courses. Attitudes tended to start
lower in courses for education and nonscience majors than in
calculus- and algebra-based courses. Attitudes, however, became
more expertlike in courses for education and nonscience majors
to the extent that they largely overlapped with those for calculus-
and algebra-based courses on the post-test. The diagonal line
represents no shift from pretest to post-test.
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Over all course types, 94 of 192 courses had increases in
expertlike attitudes and 98 had decreases in attitudes.
Expertlike attitudes increased more often in physics courses
for future educators (28=28) and nonscience majors
(12=14). But, attitudes also increased in approximately a
third of algebra- (29=71) and calculus-based (25=79)
courses. The density plots in Fig. 1 show the cumulative
effect of this difference in effect size across course types.
On the pretest, the density plots only slightly overlap for
calculus-based physics courses and courses for either
education or nonscience majors. On the post-test, however,
these density plots largely overlap. This shift in distribu-
tions indicates that pedagogies, such as those focused on
conceptual learning and developing expertlike attitudes in
the courses for future educators and nonscience majors can
have meaningful impacts on students’ attitudes.
Pretest attitudes were much lower in the courses for

future educators and nonscience majors where attitudes
tended to become more expertlike. This relationship leads
to the possibility that lower pretest CLASS scores differ-
entiates between courses associated with either increased or
decreased expertlike attitudes. The data, however, contra-
dict this possibility. Many of the algebra- and calculus-
based courses in the top half of the pretest scores for those
course types had positive effect sizes: 10 of 25 for calculus-
based courses and 15 of 29 for algebra-based courses.
Furthermore, four courses for either education or non-
science majors had pretest means above 60% and all four
had positive effect sizes.

B. Effect sizes across course types

The effect size varied across all course types ranging
from a low of -0.6 to a high of 1.3 with an average of
0.04, see the distribution for all courses in the lowest
density plot in Fig. 2. The averages and distributions of
effect sizes, however, varied greatly across the four course
types; see Table I and Fig. 2. Effect sizes were more
frequently near zero or negative in calculus- and algebra-
based courses and positive and often quite large in
courses for education and nonscience majors. These results
showed that meaningful positive effect sizes occurred in all
course types and provide educators and researchers
with another metric for understanding where their courses
stand in comparison to both what is typical and what is
possible.

V. LIMITATIONS

This synthesis was limited to courses and studies that
used the CLASS. Other attitudinal and affective measure-
ments exist in Physics Education Research. For example,
Madsen et al. [11] provides a review of studies that used
both the CLASS and the Maryland Physics Expectations
Survey and Henderson et al. [29] provides a synthesis of
articles looking at physics self-efficacy.

The CLASS also presents several limitations. Several of
the authors (J. N., I. H. M. H., and B. V. D.) discuss the
CLASS in detail in Ref. [12] and we do not restate those
arguments here because many are outside the scope of this

FIG. 2. Density plots showing the distributions of effect sizes
for all four physics course types (calculus- and algebra-based
courses and courses for education and nonscience majors) and the
overall distribution of effect sizes. Approximately one-third of
algebra- and calculus-based courses had shifts toward more
expertlike attitudes while nearly all courses for education and
nonscience majors did.

TABLE I. Descriptive statistics for the four types of introduc-
tory physics courses: calculus-based courses, algebra-based
courses, courses for future educators, and courses for nonscience
majors.

Effect size Pretest (%) Post-test (%)

Course N Mean S. D. Mean S. D. Mean S. D.

Calculus 79 −0.09 0.25 62.54 15.57 60.79 16.67
Algebra 71 −0.01 0.24 56.71 15.43 56.42 16.08
Non Sci. 14 0.27 0.28 53.50 15.95 57.95 16.43
Education 28 0.45 0.30 51.15 17.81 59.19 18.12
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article. The original development of the CLASS focused on
attitudes physicists found important and was only loosely
based on theoretical frameworks [9]. Subsequent work has
identified a three-factor model as the best fit for the CLASS
[9,18]. However, even these articles place little emphasis on
the theoretical foundations for these three latent variables.
For example, Kontro and Buschhüter [18] labels one as
problem solving self-efficacy but makes no reference to
Bandura et al. [30] or other relevant literature on self-
efficacy. Grounding measurements in theoretical frame-
works guides interpreting those measurements meaning
and can inform the design and implementation of pedag-
ogies and interventions that support students developing
expertlike attitudes. For example, a measurement construct
built to align with self-efficacy [30] and having validity
evidence for measuring self-efficacy would allow research-
ers to draw on the broader social cognitive theory [31,32]
that contains self-efficacy to design, implement, and test
interventions with confidence in the alignment between the
measurement tool and the intervention. Theoretical foun-
dations align interventions and measurements to focus
efforts on developing beneficial interventions and pedag-
ogies. Even though Douglas et al. [9] and Kontro and
Buschhüter [18] disagree with Adams et al. [3] about the
number of factors and number of items to use on the
CLASS, we are confident that the overall score used in this
study would correlate with those subconstructs and pro-
vides insight on the general change in attitudes in college
physics courses.

VI. DISCUSSION

By describing 192 courses from the literature or LASSO
database, these results show the state of attitudinal out-
comes across four common types of physics courses. This
synthesis shows both what is possible, shifts towards
expertlike attitudes in almost every course for future

educators and nonscience majors, and what can be
improved, courses for science majors. This synthesis also
acts as a benchmark to better understand course outcomes.
For educators and researchers who develop novel methods
for supporting students in gaining more expertlike attitudes,
these results can provide a context for motivating their
work and interpreting that work’s efficacy.
The results demonstrate a stark difference between the

shifts in students’ attitudes for introductory physics courses
for future educators and non-science majors compared to
algebra- and calculus-based courses. The attitude develop-
ment in courses for future educators and nonscience majors
indicate that focusing on attitudes can support students’
developing expertlike attitudes. The beneficial relationship
between attitudes and conceptual learning, becoming a
physics major, and the quality of student’s experiences in
physics all warrant a greater emphasis on attitudes in
algebra- and calculus-based physics courses. Physics
courses for science majors have the potential to improve
a broad swath of student outcomes, including the experi-
ences that students have in their physics courses, by
developing and using evidence-based pedagogies that
support students’ attitudes becoming more expertlike.
This lack of focus on attitudes likely plays a role in why
so many highly competent students leave physics and other
science majors in pursuit of more meaningful degrees [5].
Courses that emphasize attitude development can support
departments in attracting and retaining more and more
diverse students. For the students who take these courses
and decide not to become science majors, they can still
develop a deeper appreciation of the role of science in
society and everyday life.
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