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Abstract

Background: High-stakes assessments, such the Graduate Records Examination, have transitioned from paper to
computer administration. Low-stakes research-based assessments (RBAs), such as the Force Concept Inventory, have
only recently begun this transition to computer administration with online services. These online services can simplify
administering, scoring, and interpreting assessments, thereby reducing barriers to instructors’ use of RBAs. By supporting
instructors’ objective assessment of the efficacy of their courses, these services can stimulate instructors to transform
their courses to improve student outcomes. We investigate the extent to which RBAs administered outside of class
with the online Learning About STEM Student Outcomes (LASSO) platformprovide equivalent data to tests administered
on paper in class, in terms of both student participation and performance. Weuse an experimental design to investigate
the differences between these two assessment conditions with 1310 students in 25 sections of 3 college physics
courses spanning 2 semesters.

Results: Analysis conducted using hierarchical linear models indicates that student performance on low-stakes RBAs
is equivalent for online (out-of-class) and paper-and-pencil (in-class) administrations. The models also show differences
in participation rates across assessment conditions and student grades, but that instructors can achieve participation
rates with online assessments equivalent to paper assessments by offering students credit for participating and by
providing multiple reminders to complete the assessment.

Conclusions: We conclude that online out-of-class administration of RBAs can save class and instructor time while
providing participation rates and performance results equivalent to in-class paper-and-pencil tests.
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Background
Research-based assessments (RBAs), such as the Force
Concept Inventory (FCI) (Hestenes et al. 1992), the Con-
ceptual Survey of Electricity and Magnetism (CSEM)
(Maloney et al. 2001), and the Colorado Learning Atti-
tudes about Science Survey (CLASS) (Adams et al. 2006),
measure students’ knowledge of concepts or attitudes that
are core to a discipline. The demonstrated efficacy of
RBAs in the research literature has led many instructors
to use them to assess student outcomes and to develop
and disseminate research-based teaching practices, par-
ticularly in the STEM disciplines (Singer and Smith 2013).
However, Madsen et al. (2016) found that instructors
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face several barriers to using RBAs, including choosing
assessments, administering and scoring the assessments,
and interpreting results.
Educators and researchers have developed several

online resources to support instructors’ adoption of RBAs.
A central thrust of these efforts is the development of tools
to make it easy for instructors to quickly and easily collect
high-quality student RBA data. For example,

1 https://www.physport.org/,
2 hcuboulder.qualtrics.com/jfe/form/SV_086qKl

JAMx8VaMl, and
3 https://learningassistantalliance.org/.

As use of online data collection systems increases, it
is important to establish whether online administration
of RBAs outside of class provides equivalent data to
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the traditional in-class, paper-and-pencil administration
methods (Bugbee 1996).

Literature review
While substantial research has compared paper-and-
pencil tests (PPT) with online computer-based tests
(CBT) on graded, high-stakes assessments, little of it has
focused on low-stakes RBAs as pretests and posttests in
college settings, for which participation may be optional.
In investigations of low-stakes assessments, it is critical to
look at participation rates as well as performance results.
If CBTs lead to lower participation rates or skewing of par-
ticipation rates towards particular types of student, then
using CBTs may lead to misleading or unusable data. If
CBTs impact student performance on assessments, then
comparisons to PPT data may be difficult or impossible to
make. In our review of the literature, we will examine what
research shows about the impact on student participation
rates and performance of transitioning assessments from
PPTs to CBTs.

Participation rates
To determine normative participation rates for RBAs and
what factors are related to them, we reviewed 23 studies
using RBAs in courses that were similar to those exam-
ined in our study (i.e., introductory physics courses). The
studies we identified reported pretest and posttest results
for either the FCI, the Force and Motion Conceptual Eval-
uation (FMCE) (Thornton and Sokoloff 1998), or the Brief
Electricity and Magnetism Assessment (BEMA) (Ding et
al. 2006). Of these 23 published studies, only 5 provided
enough information about their data for us to evaluate
the participation rates (Nissen and Shemwell 2016; Kost
et al. 2009; Kost-Smith et al. 2010; Cahill et al. 2014;

Brewe et al. 2010). Three provided sufficient data to com-
pare participation rates across gender and course grade.
Each of the papers reported only theirmatched data after
performing listwise deletion. The studies reported that
participation rates ranged from 30 to 80%, that female stu-
dents were 5 to 19% more likely to participate, and that
students who participated had higher grades than those
that did not (see Table 1).
Because few studies have investigated student participa-

tion on low-stakes assessments in physics learning envi-
ronments, we expanded our literature review to cover a
wider range of fields. Research into student participation
rates on low-stakes assessments has primarily focused
on end-of-course and end-of-degree evaluations (Dom-
meyer et al. 2004; Stowell et al. 2012; Bennett and Nair
2010; Nulty 2008; Nair et al. 2008; Goos and Salomons
2017). All of these studies of participation rates exam-
ine non-proctored, low-stakes CBTs because high-stakes
and proctored tests (e.g., course finals or the GREs) typ-
ically require participation. The majority of these studies
examine how instructor or institutional practices affect
overall student participation rates. These studies found
that reminders and incentives for participation increased
overall participation rates. In an examination of end-of-
course evaluations from over 3000 courses, Goos and
Salomons (2017) disaggregate overall participation rates
to test for selection bias in students’ participation. They
found that there was a positive selection bias that had non-
negligible effects on the average evaluation scores. While
these studies did not use data from RBAs, they provide
context for the instructor practices we examine and the
analysis we perform in our research.
Bonham (2008) was one of the first to examine stu-

dent participation rates on RBAs. He examined data

Table 1 Participation and GPA for students in previous studies

Source Gender Participant grades Non-participant grades Participant �grade Odds

Mean N SD Mean N SD Rate F/M

Nissen and Shemwell (2016) M 2.69 90 1.28 2.1 92 1.28 0.49 0.59 1.37

F 2.78 27 1.26 2.05 13 1.16 0.68 0.73

Kost et al. 2010 M 2.85 1257 0.8 1.93 500 1.1 0.72 0.92 1.11

F 2.8 447 0.8 1.96 114 1.2 0.80 0.84

Kost et al. 2009 M 2.82 1563 0.8 2.14 1152 1.2 0.58 0.68 1.09

F 2.74 533 0.8 1.89 315 1.1 0.63 0.85

Cahill et al. 2014 All – 366 – – 314 – 0.54 – –

All – 773 – – 448 – 0.63 – –

All – 360 – – 219 – 0.62 – –

All – 738 – – 384 – 0.66 – –

Brewe et al. 2010 All – 258 – – 65 – 0.80 – –

All – 758 – – 1743 – 0.30 – –
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from college astronomy courses where assessments were
administered both online outside of class as CBTs and in
class as PPTs. Students completed a locally made concept
inventory and a research-based attitudinal survey. The
students (N = 559) were randomly assigned to two assess-
ment conditions with either the concept inventory done
in-class and the attitudinal survey done outside of class via
an online system or the reverse. Bonham (2008) examined
the impact of faculty practices on student participation
rates by comparing student participation across classes
that offered varying incentives to participate. Student par-
ticipation rates on the CBTs were 8 to 27% lower than on
the PPTs. Courses that offered more credit, reminders in
class, and email reminders had higher student participa-
tion rates.
In preliminary work for this study, Jariwala et al. (2016)

examined student participation rates on RBA pretests
and posttests across several physics courses. The study
included 693 students in three physics courses taught
by five instructors at a large public university. Instruc-
tors used the Learning About STEM Student Outcomes
(LASSO) platform to administer the CBTs. The LASSO
platform is a free online system that hosts, adminis-
ters, scores, and analyzes student pretest and posttest
scores on science and math RBAs. The LASSO plat-
form is described in detail in the “Methods” section.
The researchers employed an experimental design to ran-
domly assign each student an RBA to complete in class
on paper and an RBA to complete outside of class using
LASSO. Average posttest participation rates for the five
instructors ranged from 18 to 90% for CBTs and 55 to
95% for PPTs. While some instructors had significantly
lower participation rates for CBTs than for PPTs, others
had rates that were quite similar. Interviews of the faculty
about their CBT administration practices found several
commonalities between the courses with higher participa-
tion rates. Instructors with higher CBT participation rates
gave their students credit for participating and reminded
their students to complete the assessment both over email
and during class.
The general trends in findings for all the studies on par-

ticipation rates were that participation rates on both PPT
and CBT varied, and that there was the potential for skew-
ing of data by student demographics and course grades.
Participation rates for CBTs increased when instructors
provided students with some form of credit for partici-
pating and with reminders to complete the survey. While
all studies found similar results, most primarily relied
on descriptive statistics to support their claims. The lack
of statistical modeling in these publications means they
lack precise claims, such as how much difference in par-
ticipation rates is caused by giving students reminders
or offering credit. The studies also largely ignored the
impact of student demographics on participation rates.

For example, none of the studies examined how student
gender or performance in a class impacted their likelihood
of participating. These factors must be taken into account
to make generalizable claims.

Performance
Significant work has gone into examining the impact of
CBT and PPT administration on student performance.
Interest in the impact of CBTs picked up in the 1990s as
testing companies (e.g., the Educational Testing Service
and the College Board) transitioned services to com-
puters and digital Learning Management Systems (e.g.,
Blackboard Learn and Desire2Learn) emerged as com-
mon course tools (Bugbee 1996). These shifts in testing
practices led to several studies into the impact of comput-
erizing high-stakes, proctored assessments in both K-12
(Kingston 2008; Wang et al. 2007a; 2007b) and uni-
versity settings (Prisacari and Danielson 2017; Čandrlić
et al. 2014; Wellman and Marcinkiewicz 2004; Anakwe
2008; Clariana and Wallace 2002). Research across these
settings generally found that performance on proctored
computerized versions of high-stakes assessments was
indistinguishable from performance on traditional PPTs.
These studies make no claims whether their findings are
generalizable to low-stakes RBAs.
Only a handful of studies have examined the impact of

computerized administration of low-stakes RBAs on uni-
versity student performance. In Bonham’s 2008 research
into college astronomy courses, he drew amatched sample
from students who completed the in-class and outside-of-
class surveys. He concluded that there was no significant
difference between unproctored CBT and PPT data col-
lection. However, examining Bonham’s results reveals that
there was a small but meaningful difference in the data.
The results indicated that the online concept inventory
scores were 6% higher than the in-class scores on the
posttest. For these data, 6% is an effect size of approxi-
mately 0.30. While this difference is small, lecture-based
courses often have raw gains below 20%; a 6% difference
would therefore skew comparisons between data collected
with CBT and PPT assessment conditions. Therefore, the
results of the study do not clearly show that low-stakes
tests provide equivalent data when collected in class with
PPTs or outside of class with CBTs.
In an examination of 136 university students’ per-

formance on a biology test and a biology motivation
questionnaire, Chua andDon (2013) used a Solomon four-
group experimental design to assess differences between
tests administered as CBTs and PPTs. The participants
were 136 undergraduate students in a teacher educa-
tion program. The researchers created four groups of 34
students and assigned each to one of four assessment con-
ditions: (1) PPT posttest, (2) PPT pretest and posttest,
(3) CBT posttest, and (4) CBT pretest and posttest.
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The posttest was administered 2 weeks after the pretest.
This design allowed the analysis to differentiate between
differences caused by taking the pretest and differences
caused by doing the test as a CBT instead of PPT.
After accounting for the effects of taking the pretest, the
researchers found no significant differences between the
tests administered as CBTs and those administered as
PPTs. While the study uses a strong experimental design,
the sample size is small (N = 34/group) which brings the
reliability and generalizability of the study into question.
Chuah et al. (2006) examined the impact of assessment

conditions on student performance on a low-stakes per-
sonality test. They assigned the participants (N = 728)
to one of three assessments conditions: (1) PPT, (2) proc-
tored CBT, and (3) unproctored CBT. They used mean
comparison and item response theory to examine partici-
pant performance at both the assessment and item levels.
Their investigation found no meaningful differences in
performance between the three assessment conditions.
The authors concluded that their analysis supports the
equivalence of CBTs and PPTs for personality tests.
As described above, even among the studies that

are most closely aligned with our research questions,
very few of them directly examined how student
responses on low-stakes, unproctored administration of
CBTs compare to responses on PPTs. Those that have
examined these issues tend to have small sample sizes and
do not find consistent differences, making it difficult to
support reliable and generalizable claims using their data.

Research questions
The purpose of the present study is to examine whether
concept inventories and attitudinal surveys administered
as low-stakes assessments online outside of class as
CBTs provide equivalent data to those administered in
class as PPTs. We examine equivalence between CBT
and PPT administrations for both participation and
performance.
To examine equivalence of participation, we ask the

following three research questions:

1 How do instructor administration practices impact
participation rates for low-stakes RBAs, if at all?

2 How are student course grades related to
participation rates for low-stakes RBAs, if at all?

3 To what extent does participation differ across
demographic groups?

To examine equivalence of performance, we ask the fol-
lowing research question:

4 How does assessment condition (PPT vs CBT) impact
student performance on low-stakes RBAs, if at all?

If an online data collection platform can provide
equivalent quantity and quality of data to paper-based
administration, then the platform addresses many of the
instructors’ needs that Madsen et al. (2016) identified,
and therefore lowers barriers for instructors to assess
and transform their own courses. A second major benefit
of the widespread use of an online data collection sys-
tem like the LASSO platform is that they can aggregate,
anonymize, and make all the data available for research
(more details on the LASSO platform are provided in the
“Methods” section). The size and variety of this data set
allows researchers to perform investigations that would
be underpowered if conducted at only a few institutions
or would lack generalizability if only conducted in a few
courses at a single institution.

Methods
Setting
The data collection for the study occurred at a
large regional public university in the USA that is a
Hispanic-Serving Institution (HSI) with an enrollment of
approximately 34,000 undergraduate students and 5000
graduate students. The university has a growing num-
ber of engineering majors and large numbers of biology
and pre-health majors, all of whom are required to take
introductory physics.
We collected data from 27 sections of three different

introductory physics courses (algebra-based mechanics,
calculus-based mechanics, and calculus-based electricity
and magnetism [E&M]) over two semesters (Table 2).
Algebra-based mechanics was taught in sections of
80–100, without research-based instructional materials
or required attendance. The calculus-based courses were

Table 2 Course demographic data and instruments used

Semester 1 (Spring 2016) Semester 2 (Fall 2016) Instruments

Sections Students Male URM Sections Students Male URM CI/AS

A Mech 2 194 58% 46% 6 490 50% 52% FCI/CLASS

C Mech 5 188 74% 45% 4 175 67% 60% FCI/CLASS

C E&M 4 117 70% 52% 4 146 74% 47% CSEM/CLASS

Total 11 499 67% 47% 14 811 58% 53% -
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taught in sections of 30–50, were supported by Learning
Assistants (LAs), and used research-based instructional
methods; incentives for attendance varied by instructor.
In a typical semester, the Department of Physics offers
four to six sections of each of these courses. We discarded
data from 2 of the 27 sections due to instructor errors
in administering the assessments. The data from the 25
sections analyzed in this study are described in Table 2.

Design of the data collection
The study used a between-groups experimental design.
We used stratified random sampling to create two
groups within each course section with similar gender,
race/ethnicity, and honors statusmakeups. The institution
provided student demographic data. Group 1 completed
a concept inventory (CI) online outside of class using the
LASSO platform, and an attitudinal survey (AS) in class
using paper and pencil (Fig. 1). Group 2 completed the
CI in class and the AS online outside of class. Within
each course, both groups completed the in-class assess-
ment at the same time and had the same window of time
to complete the online assessment. Assessments were
administered at the beginning and end of the semester.
The LASSO platform (https://learningassistantalliance.

org/) hosts, administers, scores, and analyzes RBAs
online. When setting up a course in LASSO, instruc-
tors answer a set of questions about their course, select
their assessments, and upload a course roster with student
emails. When instructors launch a pretest, their students
receive an email from the LASSO platformwith directions
on how to participate and a unique link that takes them to
their assessment page. The first question students answer
is whether they are over 18 years of age and are will-
ing to have their data anonymized and made available to
researchers. Students then complete a short set of demo-
graphic questions and begin their assessment. Instructors
can track which students have participated in real-time
and use the LASSO platform to generate reminder emails
for students who have not yet completed the assess-
ment. Near the end of the semester, faculty launch the
posttest and the process of data collection repeats. After

Fig. 1 Student groupings for RBA assignments using stratified
random sampling. Each student takes one assessment online using
LASSO and one in-class on paper at the beginning and again at the
end of the semester

the posttest closes, instructors receive a report on their
students’ performance. Instructors can access all of their
students’ responses at any time. Data from participating
courses are added to the LASSO database where they are
anonymized, aggregated with similar courses, and made
available to researchers with approved IRB protocols.
Paper assessments were collected by the instructors,

scanned using automated equipment, and uploaded to
the LASSO platform, where the research team matched it
with the CBT data collected directly through the platform.
The research team downloaded the full set of student data
from the LASSO platform and combined it with student
course grades and demographic data provided by the insti-
tution. The data analysis did not include students who
joined the class late or dropped/withdrew from the course
because the research team could not assign them to a
treatment group. Prior to applying filters to remove these
students, the sample was 1487 students. With these filters
applied, the total sample was 1310 students in 25 course
sections.
Students in both mechanics courses completed the 30

question Force Concept Inventory (FCI) (Hestenes et al.
1992). Students in the E&M course completed the 32
question Conceptual Survey of Electricity and Magnetism
(CSEM) (Maloney et al. 2001). We scored both CIs on a
0–100% scale. Students in all the courses completed the
same AS, the Colorado Learning Attitudes about Sci-
ence Survey (CLASS). The CLASS measures eight sepa-
rate categories of student beliefs compiled from student
responses to 42 questions. Responses are coded as favor-
able, neutral, or unfavorable based on agreement with
expert responses. We analyzed the overall favorable score
in the present study on a 0–100% scale. We obtained
course grades from the course instructors and student
demographics from the institution.
During the first semester of data collection (Jariwala

et al. 2016), the research team provided the instructors
with little guidance on how to motivate students to com-
plete their CBT. Participation rates varied greatly across
instructors. The research team asked the instructors what
practices they used to motivate students, and identified
four instructor practices associated with higher student
CBT participation rates. The research team adopted these
four instructor practices as recommended practices:

1 Multiple email reminders,
2 Multiple in-class announcements,
3 Participation credit for the pretest, and
4 Participation credit for the posttest.

During the second semester of data collection, the
research team advised all instructors to use the recom-
mended practices to increase student participation. At the
end of the second semester, we asked the instructors what

https://learningassistantalliance.org/
https://learningassistantalliance.org/
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they had done to motivate students to participate in their
CBTs.We used instructor responses to assign each section
a Recommended Practices score ranging from zero to four
according to the number of recommended practices they
implemented. All analyses presented in this article include
both semesters of data.

Analysis
We used the HLM 7 software package to analyze the
data using Hierarchical Linear Models (HLM). HLM is
a method of modeling that leverages information in the
structure of nested data. In our data, measurements
(student scores on assessments) nested within students
and students nested within course sections, as shown
in Fig. 2. HLM also corrects for the dependencies cre-
ated in nested data (Raudenbush and Bryk 2002). These
dependencies violate the assumptions of normal ordinary
least squares regression that each measure is indepen-
dent of each other, an assumption which is not met
when comparing students grouped in different classes.
HLM can account for these interdependencies by allow-
ing for classroom-level dependencies. In effect, HLM
creates unique equations for each classroom and then
uses those classroom-level equations to model an effect
estimate across all classrooms. Within the HLM 7 soft-
ware, we used the hypothesis testing function to generate
means and standard errors from the models for plots and
comparisons.
We investigated the performance research questions

with one set of HLM models and the participation
research questions with a separate set of Hierarchical
Generalized Linear Models (HGLM). The two different
types of HLM were necessary because the outcome vari-
able was binary in the participation models (students did
or did not participate) and continuous in the performance
models (RBA score).
For both the participation and performance models,

we built each model in several steps by adding variables.
We compared both the variance and the coefficients for
each model. Comparing the total variance in each of the
models informed the strength of the relationship between
the variables in the model and students participation.
For example, variables that related to participation would

Fig. 2 The structure of the data is hierarchical with measures (either
participation or scores) nested in students nested in course sections

reduce the total variance in the models that included
them. The more that the variance reduced, the stronger
the relationship between the variables and participation.
In HLM, the variance is also distributed across the levels
of the model: our 3-level models measure variance within
students, between students within a section, and between
sections. We are interested in both the change in the total
variance and the change at specific levels when variables
are added. For example, when we add the section level
variables to the models such as course type or instruc-
tor practices, we are interested in how much the variance
between sections is reduced. The model coefficients’ size
indicated the strength of the relationship between each
variable and the outcome variable. Together, variance and
coefficient size allow us to identify the extent to which
the variables of interest predict student participation and
performance.

Participation
To investigate students’ participation rates in the com-
puter versus paper-and-pencil assessments, we differen-
tiated between each assessment by assessment condition
and assessment timing using four dummy variables: pre-
CBT, post-CBT, pre-PPT, and post-PPT. Our preliminary
HGLM analyses indicated that there was no difference
in participation between the AS and CI instruments, so
to keep our models concise, we did not include variables
for instruments in the models we present. We built an
HGLM of students’ participation rates for the PPT and
the CBT on both the pretest and posttest. The HGLM
was a population-averaged logistic regressionmodel using
penalized quasi-likelihood (PQL) estimation because the
outcome variable was binary (whether or not students
completed the assessment). We used PQL because it was
easily available in the HLM software and less computa-
tionally intensive than other estimation techniques. How-
ever, PQL overestimates the probability of highly likely
events (Capanu et al. 2013). To address this concern, we
compared the 3-level HGLM models we report in this
article to four 2-level HGLM models that used adaptive
Gaussian quadrature estimation. There were no mean-
ingful differences in the models or the inferences that
we would make from the models. For simplicity, we only
report the three-level HGLM model that used full PQL
estimation.
The data are nested in three levels (Fig. 2): the four mea-

sures of participation nested within students, and the stu-
dents nested within course sections. The outcome variable
for these models was whether students had participated
in the assessment (0 or 1). In the final model (Eqs. 1–7),
we included dummy variables for the four assessment con-
dition and timings (CBT pre, PPT pre, CBT post, and PPT
post) at level 1, students’ final grades in the course as four
dummy variables (0 or 1 for each of the grades A, B, C,
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and D) at level 2, gender (male = 0 and female = 1) at
level 2, and a continuous variable for recommended prac-
tices (0 to 4) at level 3. The structure of these variables
is laid out in Table 3. The dummy variable for an F grade
is not included in the equation because it is integrated
into the intercept value. The models did not include the
recommended practices for the PPTs because the prac-
tices focused on improving participation on the CBTs.
The value of the recommended practices variable was the
cumulative number (0 to 4) of recommended practices
that faculty used to motivate their students to participate
in the CBTs. The models included students’ grades in the
course because analysis of the raw data showed that stu-
dents’ course grades positively related to participation; we
included course grades as dummy variables rather than
as a continuous variable because there was a non-linear
relationship between course grade and participation. Our
preliminary analysis also included a dummy variable for
race/ethnicity, but we did not include it in the final model
because it was not predictive of student participation.
In a logistic model, the coefficients for the predictors are

logits (η), or logarithms of the odds ratio. We generated
probabilities for different groups of students participating
by using themodel to create a logit for that probability and
then converting the logit to a probability using Eq. 8.
Level 1 equations

Probability(Participationijk = 1|πjk) = φijk (1)
log[φijk/(1 − φijk)]= ηijk (2)

ηijk = π1jk ∗ CBTPREijk + π2jk ∗ CBTPOSTijk

+ π3jk ∗ PPTPREijk + π4jk ∗ PPTPOSTijk
(3)

Level 2 equations. There are four level 2 equations, one for
each π .

πijk = βi0k + βi1k ∗ Genderjk + βi2k ∗ Ajk + βi3k ∗ Bjk

+ βi4k ∗ Cjk + βi5k ∗ Djk + rjk
(4)

Table 3 Variables in the final participation and performance
models with outcome variables in italics

Model
Structure

Variables

Level Participation Performance

1 Assessment Participation (0 or 1) Score 0 to 100%

Assessment condition Assessment
and timing timing

2 Students Course grade Assessment
condition

Gender

3 Sections Recommended
practices (CBT only)

Course type

Level 3 equations. There are 24 level 3 equations, 2 include
a variable for practices, 22 do not and are illustrated
by Eq. 7.

β10k = γ100 + γ101 ∗ Practicesk + u1jk (5)
β20k = γ200 + γ201 ∗ Practicesk + u2jk (6)

βijk = γij0 + uijk (7)

φ = 10η/(1 + 10η) (8)
We built the model in three steps: (1) differentiating
between the pretest and posttest for the CBT and PPT
assessment conditions, (2) adding the level 3 predictor
for the number of recommended practices the instruc-
tor used, (3) adding level 2 predictor for course grade
and gender. On their own, the effect that the different
model coefficients have on participation rates is difficult
to interpret because they are expressed in logits. Part of
the difficulty is that the size of each coefficient cannot
be directly compared because the effect of a coefficient
on the probability of participation depends on the other
coefficients to which it is being added (e.g., the inter-
cept). For example, a logit of 0 is a 50% probability, 1 is
approximately 90%, and 2 is 99%. Thus, a 1.0 shift in log-
its from 0 to 1 is a much larger change in probability than
the 1.0 shift from 1 to 2 logits. The importance of the
starting point was particularly salient for interpreting the
coefficients in our HGLM models because the intercepts
for the pre/post assessment conditions varied from a low
of−2.7 to a high of 2.3. To simplify interpreting the results
of the model, we used the hypothesis testing function in
the HLM software to generate predicted logits and stan-
dard errors for each of the combinations of variables and
converted the logits to probabilities with error bars of 1
standard error. In our analyses, we focused on posttest
participation rates because they are the more limiting
rates for data collection, and because the posttests contain
information about the effects of the course whereas the
pretests only contain information about the students who
enroll in the course.
Our investigation of differences in participation rate by

course grade and gender used other analyses in addition to
the coefficients and variance output by the HGLMmodel.
For comparing the differences in participation rates by
gender, we used the odds ratio, which the HGLM pro-
duces as an output and which are easily calculated for
studies in the published literature. An odds ratio of 1.0
indicates that male and female students were equally likely
to participate. An odds ratio greater than 1.0 indicates
that female students were more likely to participate than
male students. If the confidence interval for the odds ratio
includes 1.0, then it is not statistically significant. Com-
paring the differences in participation by course grade was
more difficult because the HGLM does not produce an
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output that is comparable to the mean grades for par-
ticipants and non-participants, which is the statistic that
prior studies report. Therefore, we also reported these raw
statistics to situate our study within the existing literature.

Performance
To investigate differences in performance between tests
administered as CBTs and PPTs (research question 4),
we built separate HLM models for the CI and AS
scores. It was possible to combine these models into a
single multivariate HLM. However, multivariate HLMs
are more complex to both analyze and report, and
the HLM software documentation recommends that
researchers start with separate models for each variable
(Raudenbush et al. 2011). After producing our models,
we concluded that the two models were sufficient for
our purposes. The HLM performance models for the CI
and AS data had identical structures. All performance
models used RBA score as the outcome variable. The
models included a level 1 variable (post) to differentiate
between the pretest and posttest. The variable of inter-
est for the models that addressed research question 4 was
assessment condition at level 2. We also included pre-
dictor variables at level 3 for each of the three courses
because performance varied across the course popula-
tions, and it allowed us to make comparisons of the effect
of assessment condition across the multiple courses for
both the pretest and posttest. These comparisons had the
advantage of indicating whether there was a consistent
difference in scores (e.g., CBT was always higher), even if
that difference was too small to be statistically significant.
Initially, we included level 2 variables to control for course
grade, gender, and race/ethnicity because these variables
relate to performance on RBAs (Madsen et al. 2013;
Van Dusen and Nissen 2017). However, these demo-
graphic variables had no effect on the impact of assess-
ment conditions on student performance in our models.
For brevity, we excluded these variables from the models
we present here.
The final performance model included RBA score as

the outcome variable and predictor variables for posttest
(level 1), assessment condition (level 2), and course
(level 3) (Eq. 3). The variables used in the final model
are shown in Table 3. We built the model in three steps:
(1) a level 1 variable for posttest, (2) then add a level 2
variable for assessment condition, and (3) add level 3 vari-
ables for each course. To determine howmuch variance in
the data was explained by each of the variables, we com-
pared the total variance between each of the models. The
reduction in the variance between the models indicated
the strength of the relationship between the variables and
performance by showing how much information about
performance the added variables provided. For example, if
there were large differences in performance between PPTs

and CBTs, then the addition of CBT to the model would
decrease the total variance. One distinction betweenHLM
and OLS regression is that in OLS additional variables
always reduce the unexplained variance, whereas in HLM,
the variance can increase if a non-significant variable is
added to the model (Raudenbush and Bryk 2002, p. 150).
We used the hypothesis testing function in the HLM soft-
ware to generate predicted values and standard error for
each of the courses’ pretest and posttest scores, for both
assessment conditions, to inform the size and reliability of
any differences between assessment conditions.
For the performance analyses, we imputed missing data

using Hierarchical Multiple Imputation (HMI) with the
hmi package in R. We discuss the rate of missing data
in the “Participation” section below. Multiple Imputation
(MI) addresses missing data by (1) imputing the missing
data m times to create m complete data sets, (2) analyz-
ing each data set independently, and (3) combining the
m results using standardized methods (Dong and Peng
2013). MI is preferable to listwise deletion because it max-
imizes the statistical power of the study (Dong and Peng
2013) and has the same basic assumptions. HMI is MI
that takes into account students being nested in different
courses, and that their performance may be related to the
course they were in. Our HMI produced m = 10 com-
plete data sets. In addition to pretest and posttest scores,
the HMI included variables for course, course grade, gen-
der, and race/ethnicity. We used the HLM software to
automatically run analyses on the HMI datasets.
Level 1 equations

SCOREijk = π0jk + π1jk ∗ POSTijk + eijk (9)

Level 2 equations

π0jk = β00k + β01k ∗ Conditionjk + r0jk (10)
π1jk = β10k + β11k ∗ Conditionjk (11)

Level 3 equations

β00k = γ001 ∗ AlgMechk + γ002 ∗ CalcMechk
+ γ003 ∗ CalcE&Mk + u00k (12)

β01k = γ011 ∗ AlgMechk + γ012 ∗ CalcMechk
+ γ013 ∗ CalcE&Mk + u01k (13)

β10k = γ101 ∗ AlgMechk + γ102 ∗ CalcMechk
+ γ103 ∗ CalcE&Mk + u10k (14)

β11k = γ111 ∗ AlgMechk + γ112 ∗ CalcMechk
+ γ113 ∗ CalcE&Mk + u11k (15)

Results
First, we present the results for the participation analysis.
These results include descriptive statistics and the HGLM
models. Then, we present the results for the performance
analysis.
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Participation
We first compare the raw participation rates for the CBTs
and PPTs—overall, by gender, and by grade—to partici-
pation rates reported in prior studies. This comparison
identifies the extent to which participation in this study
was similar to participation in prior studies and informs
the generalizability of our findings. Prior studies report
grade and gender differences in participation in aggre-
gate so we cannot compare their findings to our HGLM
outputs, which differentiate between each course grade.
Therefore, we compare the raw differences inmean course
grades for participating and non-participating students in
our data to the differences reported in prior studies.
Following our comparison of the raw data, we present

three HGLM models. Model 1 differentiates between the
pretests and posttests for the two assessment condition
(CBT and PPT). The second model addresses research
question 1 by accounting for how instructor use of the
recommended practices related to student participation.
Model 3 addresses research questions 2 and 3 by including
variables for student gender and course grade.

Descriptive statistics
The descriptive statistics show that the overall PPT par-
ticipation rate is higher than the overall CBT participation
rate for pre and post administration of both the CI and
AS, as shown in Table 4. These raw participation rates do
not account for differences in participation across course
sections. These rates all fall within the range found in prior
studies shown in Table 1. Gender differences in partic-
ipation in the raw data for this study are small and are
smaller than those reported in prior studies. Differences
in course grades between those that did and did not par-
ticipate are large and are similar in size to those reported
in prior studies. However, these comparisons between the
present study and prior studies are only approximations.
The prior studies reported matched data and in some of
these studies it is unclear if they included all students who
enrolled in the course, only students who received grades,
or only students who took the pretest. The present study
includes only students who enrolled in the course prior to
the first day of instruction and who received a grade in
the course. While these differences between the present

study and prior studies make it difficult to compare partic-
ipation rates, the approximate comparison indicates that
the present study is not outside the boundaries of what
researchers have reported in prior studies.

The relationship between participation and instructor
practices
After converting the logits given in Table 5 to probabil-
ities, model 1 shows participation rates of 83% for the
CBT pretest, 66% for the CBT posttest, 100% for the
PPT pretest, and 95% for the PPT posttest. These par-
ticipation rates all exceed those calculated with raw data,
a known issue with HGLM models as discussed in the
“Methods” section. Model 2 includes a variable for the
number of recommended practices the instructors used
in each section for the CBT pretest and posttests. Includ-
ing recommended practices did not reduce the variance
within assessments or between assessments within stu-
dents (levels 1 and 2) for any of the assessment conditions,
but it did explain a large part of the variance between
sections for the CBT pretest and posttest, as shown in
the bottom of Table 5. The variance in model 2 is 15%
lower (from 0.820 to 0.700) for CBT pretests and 45%
lower (from 1.220 to 0.670) for the CBT posttests than
in model 1. This large decrease in variance indicates that
the number of recommended practices instructors used to
motivate their students to participate accounted for a large
proportion of the difference in participation rates between
sections on the assessments administered as CBTs.
Usingmodel 2, we calculated the predicted participation

rates for students on PPTs and CBTs in courses that used
different numbers of recommended practices. We calcu-
lated the probabilities shown in the graph from the logits
and standard errors calculated with the hypothesis test-
ing function in the HLM software. The logit itself is easily
calculated from the model. For example, the logit for CBT
posttest participation in a course using 3 recommended
practices is η = − 0.767 + 3(0.534) = 0.834. Using Eq. 8,
this logit gives a probability of 87%. We then plotted these
values and their error bars (1 standard error) in Fig. 3.
Figure 3 shows that when instructors used none of

the recommended practices CBT participation rates were
much lower than the PPT rates.When faculty used all four

Table 4 Participation rates for pre and post CBT and PPT administered RBAs

Gender differences Mean course grade

Cond. Time AS CI Male Female Odds Part. Non-part. �

N = 803 N = 507 (F/M)

CBT Pre 71% 67% 66% 76% 0.99 2.86 2.13 0.73

Post 59% 54% 54% 61% 1.13 2.97 2.20 0.77

PPT Pre 94% 94% 94% 95% 1 2.68 1.95 0.73

Post 75% 74% 74% 75% 1 2.87 1.95 0.92
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Table 5 HGLMs comparing student participation on the CBT and PPT pretest and posttests

Final estimation of fixed effects with robust standard errors

Model 1 Model 2 Model 3

Coef. p Coef. p Coef. p

CBT pre π1

For intercept 2 β10

For intercept 3 γ100 0.679 < 0.001 0.256 0.434 − 0.671 0.081

Practices γ101 – – 0.214 0.116 0.182 0.097

Gender γ110 – – – – 0.269 0.086

D grade γ120 – – – – 0.142 0.699

C grade γ130 – – – – 0.558 0.077

B grade γ140 – – – – 1.102 0.002

A grade γ150 – – – – 1.526 < 0.001

CBT post π2

For intercept 2 β20

For intercept 3 γ200 0.296 0.118 −0.767 0.008 − 2.678 < 0.001

Practices γ201 – – 0.534 < 0.001 0.573 < 0.001

Gender γ210 – – – – 0.207 0.281

D grade γ220 – – – – 0.946 0.013

C grade γ230 – – – – 1.395 < 0.001

B grade γ240 – – – – 2.057 < 0.001

A grade γ250 – – – – 2.390 < 0.001

PPT pre π3

For intercept 2 β30

For intercept 3 γ300 2.290 < 0.001 2.266 < 0.001 1.361 < 0.001

Gender γ310 – – – – 0.130 0.619

D grade γ320 – – – – 0.496 0.281

C grade γ330 – – – – 0.675 0.062

B grade γ340 – – – – 0.835 0.042

A grade γ350 – – – – 0.909 0.049

PPT post π4

For intercept 2 β40

For intercept 3 γ400 1.235 < 0.001 1.235 < 0.001 −0.706 0.047

Gender γ410 – – – – 0.224 0.180

D grade γ420 – – – – 1.522 0.001

C grade γ430 – – – – 1.514 < 0.001

B grade γ440 – – – – 2.166 < 0.001

A grade γ450 – – – – 2.493 < 0.001

Level 1 and level 2 variance

CBT pre r1 1.080 1.080 0.805

CBT post r2 1.170 1.390 1.077

PPT pre r3 1.130 1.440 1.156

PPT post r4 1.100 1.200 0.889
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Table 5 HGLMs comparing student participation on the CBT and PPT pretest and posttests (Continued)

Final estimation of fixed effects with robust standard errors

Model 1 Model 2 Model 3

Coef. p Coef. p Coef. p

Level 3 variance

CBT pre u10 0.820 0.700 0.740

CBT post u20 1.220 0.670 0.830

PPT pre u30 0.560 0.485 0.690

PPT post u40 1.340 1.370 1.180

of the recommended practices, however, CBT participa-
tion rates matched PPT rates. All the predicted partici-
pation rates in these cases exceed 90%. This participation
rate is likely an overestimate caused by high probability
predictions in HGLM using PQL. The model, however, is
likely overestimating all the participation rates by a simi-
lar amount. For example, the predicted participation rates
for a CBT posttest in a course using 4 recommended
practices (96%) and the PPT posttest (95%) are effectively
the same, so any overestimation in them should be the
same.

Participation by course grade and gender
Model 3 includes variables for student gender and course
grade. The addition of these variables decreased the
variance between assessments as well as the variance
within assessments between students for all CBT and PPT
pretests and posttests by 20 to 26% (for example, from
1.080 to 0.805) from model 2. These variables tended to
increase the variance between sections for model 3 com-
pared to model 2 (+ 42% to −14%, for example, from

0.485 to 0.690), indicating that there was unaccounted-
for variation in how course grade and gender differ-
entially related to participation in the different course
sections.
Gender differences in participation in model 3 were not

statistically significant. However, all of the coefficients in
the model indicated that female students were more likely
to participate than male students. This higher participa-
tion rate for female students was also reported in all three
of the prior studies. Therefore, it is possible that this is a
real effect that is simply to small for our complex statisti-
cal model to identify as statistically significant. The odds
ratios with 95% confidence intervals comparing female to
male participation rates calculated by the HLM software
were 1.31 [0.96, 1.79] for the CBT pretest, 1.23 [0.84, 1.81]
for the CBT posttest, 1.14 [0.67, 1.95] for the PPT pretest,
and 1.25 [0.90, 1.75] for the PPT posttest. These odds
ratios all predict higher female participation but have con-
fidence intervals that include the value 1, indicating the
difference in participation rates by gender was not statisti-
cally significant. These odds ratios, however, all fall within

Fig. 3 Student predicted participation rates (+/− 1 standard error) by assessment condition and use of CBT recommended practices from model 2.
When instructors used all four recommended practices, participation rates on CBT and PPT were similar
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the range of odds ratios found in the three prior stud-
ies, which indicates the differences in participation rate by
gender may be a consistent but small effect.
We included student course grades as dummy variables

(rather than as a single continuous variable) in model 3
because our preliminary models indicated that the differ-
ence in participation between each grade was not linear.
This non-linear relationship is observable in the values in
model 3. For example, on the PPT posttest, the difference
between students who earned Fs and Ds was 1.52 logits,
whereas for students who earned As and Bs the difference
was only 0.33 logits. In a linear relationship, it would have
been approximately the same difference in logits between
each adjacent pair of course grades. Entering the grades as
four separate variables has the downside of complicating
themodel; however, thesemodels more accurately portray
the differences in participation between each of the course
grades.
Using the hypothesis testing function in the HLM soft-

ware and model 3, we generated the logits and standard
errors for participation for each course grade under each
assessment condition using the population mean for gen-
der (0.39) and plotted these values in Fig. 3. We used the
mean value for gender so that we could focus on the dif-
ferences in predicted average participation rates across
assessment conditions and course grades. The figure does
not include the PPT pretest because the model predicted

that the participation rates across all course grades ranged
from 96 to 100%, which is too small of a difference to be
visible in Fig. 4. Model 3 indicates that for both the CBT
and PPT posttests, all four grades (A–D) were statisti-
cally significantly more likely to participate than students
who received an F in the course. Receiving a grade of F is
not shown in the model because it is incorporated in the
intercept. Figure 3 illustrates that students who received
an A, B, or C had more similar participation rates than
students who received a D or F. This is particularly evi-
dent when the participation rates are higher, such as on
the PPT posttest or on both CBT assessments when 3 or
4 recommended practices were used. These results indi-
cate that the data collection in these courses dispropor-
tionately represented higher achieving students in both
assessment conditions. Given that the raw participation
rates and differences in grades between those that did and
did not participate were both similar to those reported
in prior studies, these results strongly suggest that data
collection with low-stakes RBAs systematically over rep-
resents high-achieving students, regardless of assessment
administration method.

Performance differences between RBAs administered as CBTs
and PPTs
As discussed in the “Analysis” section, we built separate
sets of models for performance on the concept invento-

Fig. 4 Participation by course grade and recommended practices based on model 3. Gender was entered into the linear equation as the mean
value (0.39) to simplify the figure. PPT pretest is not shown because its value varies from 96 to 100% across the course grades. The results indicate
that there were large differences in participation across the different course grades and that when instructors used all four recommended practices
rates on the CBT posttests were similar to participation rates on the PPT posttests across the different courses grades
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ries (CI) and on the attitudinal surveys (AS). We built
these models in the same three steps to investigate per-
formance differences between CBT and PPTs. The first
model differentiated between pretest and posttest scores
with a variable at level 1. The second model differentiates
between assessments administered as CBTs or PPTs with
a variable at level 2. The third model added variables to
differentiate between the three courses at level 3. In our
analysis of these models, we first present the change in
the variance between the models to identify how much of
the variability in scores was explained by whether students
took the assessments as CBT or PPT. Following the anal-
ysis of the variance, we present the size and consistency
of the differences in scores between the two assessment
conditions.
For both the CI models and the AS models, the total

variance did not meaningfully decrease between models
1, 2, and 3 (see bottom of Table 6). Model 2 differentiates
between students who took the CI as PPT or CBT. For
both the AS and CI models, this differentiation caused the
total variance in the models to increase. The increase in
the total variance was very small for the CI models (< + 1%
from 270.8 to 272.7) and small for the AS models (+ 2.8%
from 195.52 to 200.92). Increases in the variance for each
sets of models is a strong indication that there were no
differences in scores between those administered as CBTs
and those administered as PPTs. Increases in the variance
for both sets of models emphasizes that the tests pro-
vided equivalent data. However, it was possible that there
were differences in some of the courses but not in oth-
ers. To address this possibility, we developed model 3 to
compare CBT and PPT while differentiating between the
three courses in the study. The total variance in model 3
slightly decreased compared to model 1 for the CI models
(− 1.7%) and slightly increased for the ASmodels (+ 1.4%).
Given the shifts in variances’ small sizes and disagree-
ments in direction, the change in variance between the
three models indicates that student performance on each
assessment was equivalent whether administered as CBT
or PPT.
CImodel 1 indicates that the average CI pretest score for

all students was 31% and that on average students gained
13%. In model 2, we differentiated between assessments
administered as PPT or CBT. Model 2 for both CI and AS
indicated that the differences in scores between PPTs and
CBTs were very small and that these differences were not
statistically significant. Specifically, on the pretest CBT
scores were slightly higher than PPT scores (< + 1%) and
on the posttest CBT scores were slightly lower than PPT
scores (< −1%). In model 3, we disaggregated the data
between the three course types, which also allowed us to
differentiate between CI instruments. For the CI model 3,
there were substantial differences between the three
courses. For the AS model 3 there were small differences

between the three courses. For both the AS model 3 and
the CI model 3, the CBT condition was not a statistically
significant predictor of score in any course. None of the
assessment condition coefficients were statistically signifi-
cantly different from zero on either the pretest or posttest.
The hypothesis testing function in the HLM software gen-
erated means and standard errors based on the CI and AS
model 3s, presented in Fig. 5. Figure 5 and both model 3s
all show that the differences between CBT and PPT scores
were small (ranging from −2.1 to 2.2%) and that scores
were not consistently higher in either assessment condi-
tion than in the other. In seven cases, the PPT was higher.
In five cases, the CBT was higher. These results indicate
that there was not a consistent, meaningful, or reliable
difference in scores between assessments administered as
CBTs and those administered as PPTs.

Discussion
Our HLM models indicate that there is no meaningful
difference in scores on low-stakes RBAs between stu-
dents who completed the RBA in class as a PPT and
those who completed the RBA online outside of class
as a CBT. Differentiating between CBT and PPT in the
models increased the variance in the models, indicating
that assessment condition (CBT vs PPT) is not a use-
ful predictor of student scores. The differences between
the models’ predicted scores for students on both the
CI and AS for the PPT and CBT conditions were very
small, did not consistently favor one assessment con-
dition over the other, and were not statistically signif-
icant. These similarities indicate that instructors and
researchers can use online platforms to collect valuable
and normalizable information about the impacts of their
courses without concerns about the legitimacy of com-
paring that data to prior research that was collected with
paper-and-pencil tests.
In terms of participation, we found that our participa-

tion data were comparable to prior research using physics
RBAs across several dimensions, including genders and
grades. We found that when faculty do little to motivate
students to complete online low-stakes assessments, stu-
dents are much less likely to participate than they are
on in-class assessments. Our models show that if fac-
ulty follow all of our recommended practices, reminding
students in class and online to participate and offering
credit for participation, student participation rates for
CBT posttests match those for PPT posttests.We focus on
the posttests rather than the pretests because the partic-
ipation rates are lowest on the posttest and they contain
important information about the effects of the course.
Our findings align with prior research into student par-
ticipation on other online surveys, such as end-of-course
evaluations. These findings indicate that, with intention,
faculty can save class time by transferring their low-stakes
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Table 6 HLMs comparing performance between PPT and CBT administered assessments for the CI and AS

Final estimation of fixed effects with robust standard errors

CI models AS models

CI 1 CI 2 CI 3 AS 1 AS 2 AS 3

Coef. Coef. Coef. Coef. Coef. Coef.

For intercept 1

For intercept 2

Intercept 3 30.99*** 31.20*** – 43.97*** 44.11*** –

Alg. mech. – – 26.93*** – – 42.87***

Calc. mech. – – 36.36*** – – 43.77***

Calc. E & M – – 29.68*** – – 47.19***

For condition (CBT)

Intercept 3 – − 0.42 – – −0.25 –

Alg. mech. – – 0.12 – – −0.61

Calc. mech. – – − 0.36 – – 1.63

Calc. E & M – – −1.18 – – −2.21

For post

For intercept 2

Intercept 3 13.04*** 12.84*** – 1.76** 1.33* –

Alg. mech. – – 7.45*** – – 1.66

Calc. mech. – – 18.61*** – – 2.98*

Calc. E & M – – 11.59*** – – −1.70

For condition (CBT)

Intercept 3 – 0.42 – – 0.84 –

Alg. mech. – – −0.32 – – 0.56

Calc. mech. – – −0.80 – – −0.27

Calc. E & M – – 3.27 – – 2.40

Level 1 and level 2 variance

Intercept 1 135.46 135.22 135.61 95.12 93.56 93.53

Level 1 125.66 125.05 124.65 98.58 98.08 97.24

Level 3 variance

Int.1/int.2 4.16 4.35 0.74 1.01 1.4 0.6

Int.1/cond. (CBT) – 0.89 0.89 – 4.81 3.45

Post/int.2 5.51 5.25 2.43 0.81 0.44 0.23

Post/cond. (CBT) – 1.94 1.92 – 2.63 3.12

Total level 3 9.67 12.43 5.98 1.82 9.28 7.4

Total variance 270.79 272.7 266.24 195.52 200.92 198.17

***p < 0.001. **p < 0.01. *p < 0.05

RBA administrations from in-class PPTs to out-of-class
CBTs without lowering their student participation rates.
The meaningful differences in participation rates across

both student course grades and gender in this study are
consistent with what we found reported in prior studies.
These differences in participation rates indicate that the
missing data in this study, and likely in any study using
low-stakes assessments, are not missing at random. We

expect that our use of HMI minimized the bias that this
introduced into our performance analysis. However, we
are not aware of any studies that have explicitly looked at
howmissing data affect results in studies using low-stakes
assessments. Given the frequency with which RBAs are
used to assess the effectiveness of college STEM courses,
the skew that missing data introduce warrants further
investigation.



Nissen et al. International Journal of STEM Education  (2018) 5:21 Page 15 of 17

Fig. 5 A comparison between CBT and PPT administered concept inventories and attitudinal surveys based on AS model 3 and CI model 3. Error
bars are 1 standard error. All of the differences between CBTs and PPTs were small, none of the differences were statistically significant, and neither
assessment condition was consistently higher than the other. These results indicate that there is no difference in performance between
assessments administered as CBTs and those administered as PPTs

Conclusions
Online out-of-class administration of RBAs can provide
participation rates and performance results equivalent to
in-class paper-and-pencil tests. Instructors should reduce
the logistical demands of administering RBAs by using
online platforms, such as the LASSO platform, to admin-
ister and analyze their low-stakes assessments. Paper-and-
pencil tests take up already-limited class time and require
instructors to use their own time to collect, score, and
analyze the assessments. All of these tasks can be easily
completed by online platforms, leaving instructors with
more time to focus on using the results of the assessments
to inform their instruction. Simplifying the process of
collecting and analyzing RBA data may lead more instruc-
tors to gather this information. By facilitating instructors’
examination of their students’ outcomes, online platforms
may also lead more instructors to start using research-
based teaching practices that have been shown to improve
student outcomes.
Large-scale data collection with online platforms can

also provide instructors with several additional bene-
fits. The platforms can integrate recommended statistical
practices, such as multiple imputation to address miss-
ing data, that most individual instructors do not have the
time or expertise to implement. The large scale of the
data collection can also be used to put instructors’ student
outcomes in the context of outcomes in courses similar
to their own. Furthermore, analysis could identify teach-
ing practices that the instructor is using that are making
their course above average, or practices that they could
adopt to improve their outcomes. For example, https://
www.physport.org/ is a website that assists faculty in ana-
lyzing their existing physics RBA data. The website has
a Data Explorer tool that provides instructors with an

evaluation of their assessment results and has a series of
articles describing highly effective research-based teach-
ing practices that instructors can use to improve student
outcomes.
In addition to supporting instructors, large-scale data

collection using online platforms has significant advan-
tages for researchers. It allows investigations into how
the implementation and effectiveness of pedagogical prac-
tices vary across institutions and populations of students.
Large sample sizes provide the statistical power required
to investigate differences between populations of students
(e.g., gender or ethnicity/race) that would not be possi-
ble in most individual courses due to small sample sizes.
Online platforms also allow researchers to disseminate
new assessments that they are developing so that those
instruments can be evaluated across a broad sample of
students. Many existing instruments were developed in
courses for STEM majors at research-intensive univer-
sities with STEM PhD programs, and it is unclear how
effective these instruments are for assessing student out-
comes at other types of institutions and in courses for
non-STEM majors. Online platforms can facilitate analy-
sis of the validity of existing RBA across broad samples of
students from all institution types.
Online data collection and analysis platforms, such

as LASSO, are relatively new and have the potential
to alter instructor and researcher practices. While it is
not known how the transition from PPT to CBT will
impact all RBAs, our findings provide strong evidence
that two of the most common concerns with digitiz-
ing low-stakes RBAs—shifts in student participation and
performance—were not borne out by the data. Based
on the results of our analyses, we recommend that
instructors consider using free online RBA administration

https://www.physport.org/
https://www.physport.org/
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platforms in conjunction with our four recommended
practices for CBTs.

Limitations
This study only examines courses in which students com-
pleted a single low-stakes RBA online at the beginning and
end of the course. Excessive measurement would likely
decrease student participation, performance, and data
quality. Higher-stakes assessments would likely incen-
tivize the use of additional materials (e.g., the internet,
textbooks, or peers) not available for tests administered
in class. It is also possible that the institution where
the study was conducted, and the populations involved
in the study are not representative of physics students
or courses broadly. However, the study included three
different courses encompassing both calculus- and
algebra-based physics sequences, which supports the gen-
eralizability of results to many populations of students.
Comparisons of CBT and PPT administered assess-

ments may also be impacted by missing data. Our use
of Hierarchical Multiple Imputations (HMI) mitigates the
impacts of missing data, but studies that use listwise dele-
tion to address missing data may have different results.
The skewing of participation rates by student course
grade demonstrates that the data are not missing com-
pletely at random and that missing data are therefore
non-ignorable.

Directions for future research
The presence and impact of missing data has received
little attention in the RBA literature. Most of the stud-
ies we reviewed did not provide sufficient descriptive
statistics to determine how much data was missing. The
majority of studies we reviewed also used listwise dele-
tion to remove missing data and create a matched dataset.
Statisticians have long pointed out that the use of list-
wise deletion is a poor approach to addressing missing
data. Our results and the prior studies we examined that
provided sufficient information to assess student par-
ticipation all indicate that male students and students
with lower course grades are less likely to participate in
research-based assessments. This skewing of data is likely
being amplified through the use of listwise deletion and
could have significant impacts research findings. If only
the highest performing students reliably participate in an
assessment, then the analysis of course data will only indi-
cate the impact on high-performing students and will not
be representative of the entire class. We expect that our
use of HMI with assessment scores and course grades mit-
igates the impact on our analysis of the skew in the data.
However, almost all studies in discipline-based education
research use matched data and do not use appropriate sta-
tistical methods for addressing missing data. Future work
to measure the impact of missing data and associated data

analysis techniques is needed to bring attention to the
impact of these issues and provide guidance on methods
for limiting their effects.
Many institutions are moving to online data collection

for their end-of-course evaluations because this stream-
lines the collection and analysis of student responses.
However, instructors are finding that students are much
less likely to participate in these surveys than in
traditional in-class paper-and-pencil surveys (Dommeyer
et al. 2004; Stowell et al. 2012; Nulty 2008; Nair et al.
2008; Goos and Salomons 2017). These surveys often
act as the primary methods for institutions to evalu-
ate the effectiveness of instructors and therefore play
an important role in retention and promotion decisions.
Our results indicate that providing multiple reminders to
complete the surveys and participation credit for com-
pleting the surveys can dramatically increase participation
rates on course evaluations administered online outside
of class.
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